| D003573 |
Cytochrome b Group |
Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. |
Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome |
|
| D006639 |
Histidine |
An essential amino acid that is required for the production of HISTAMINE. |
Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine |
|
| D000595 |
Amino Acid Sequence |
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. |
Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein |
|
| D001412 |
Bacillus subtilis |
A species of gram-positive bacteria that is a common soil and water saprophyte. |
Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto |
|
| D001483 |
Base Sequence |
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. |
DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA |
|
| D013385 |
Succinate Dehydrogenase |
A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. |
Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate |
|
| D019255 |
NADPH Oxidases |
A family of membrane-associated flavoprotein NADPH-dependent oxidoreductases that catalyze the univalent reduction of OXYGEN to create SUPEROXIDES. Structurally, they are characterized by six N-terminal transmembrane ALPHA-HELICES, a FLAVIN-ADENINE DINUCLEOTIDE (FAD)-binding region, and a C-terminal NADPH-binding region. They are expressed primarily by EPITHELIAL CELLS in gut, kidney, colon, and smooth muscle tissues, as well as GRANULOCYTES and function to transfer electrons across membranes to molecular oxygen. Defects in the production of superoxide ions by some NADPH oxidases result in GRANULOMATOUS DISEASE, CHRONIC. |
NADPH Oxidase,NAD(P)H Oxidases,NAD(P)H oxidase,Nox Proteins,Oxidase, NADPH,Oxidases, NADPH |
|