Monoclonal antibodies to bovine UDP-galactosyltransferase. Characterization, cross-reactivity, and utilization as structural probes. 1986

J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper

A series of mouse monoclonal antibodies has been developed against a soluble form of bovine UDP-galactose:N-acetylglucosamine galactosyltransferase purified to apparent chemical homogeneity by a combination of affinity and immunoadsorption chromatography. The purified enzyme consists of two molecular mass variants of 42 and 48 kDa. Individual monoclonal antibodies were selected for by their ability to recognize immobilized affinity-purified galactosyltransferase and were not reactive against bovine alpha-lactalbumin and bovine immunoglobulins. Based on competitive binding assays and Western blot analysis with either galactosyltransferase or lactose synthetase (covalently cross-linked alpha-lactalbumin galactosyltransferase), these monoclonal antibodies can be subdivided into four groups. Group A (3 clones) recognize an epitope at or near the alpha-lactalbumin binding site. In addition, this group is cross-reactive with soluble galactosyltransferase from human milk and pleural effusion. Group B (6 clones) and D (1 clone) appear to recognize two different epitopes on the 6-kDa fragment which is released when the 48-kDa galactosyltransferase polypeptide is converted to the 42-kDa form, apparently by proteolysis. Groups A and C (1 clone) recognize epitopes found on both the 48- and 42-kDa polypeptide. Interestingly, immunofluorescence studies indicate that only two monoclonal antibody groups (C and D) are able to decorate membrane-bound galactosyltransferase (Golgi-associated) in formalin-fixed, methanol-, or detergent-permeabilized cells. Thus, these groups of monoclonal antibodies appear to identify four separate structural/functional domains on soluble galactosyltransferase, two of which are not readily accessible for binding in situ.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D005260 Female Females
D005700 Galactosyltransferases Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Galactosyltransferase
D006022 beta-N-Acetylglucosaminylglycopeptide beta-1,4-Galactosyltransferase An enzyme that catalyzes the transfer of galactose from UDP-galactose to a specific glycoprotein receptor, 2-acetamido-2-deoxy-D-glucosyl-glycopeptide, during glycopeptide synthesis. EC 2.4.1.38. Thyroid Galactosyltransferase,Glycoprotein beta-Galactosyltransferase,beta-N-Acetylglucosaminide beta 1-4 Galactosyltransferase,Galactosyltransferase, Thyroid,Glycoprotein beta Galactosyltransferase,beta N Acetylglucosaminide beta 1 4 Galactosyltransferase,beta N Acetylglucosaminylglycopeptide beta 1,4 Galactosyltransferase,beta-1,4-Galactosyltransferase, beta-N-Acetylglucosaminylglycopeptide,beta-Galactosyltransferase, Glycoprotein
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
February 1983, Biochemistry,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
April 1984, Proceedings of the National Academy of Sciences of the United States of America,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
January 1984, Developments in biological standardization,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
July 1985, European journal of cell biology,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
February 1989, Hybridoma,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
November 1992, Veterinary immunology and immunopathology,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
March 1982, Journal of steroid biochemistry,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
July 1985, Virology,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
January 1985, Journal of interferon research,
J T Ulrich, and J R Schenck, and H G Rittenhouse, and N L Shaper, and J H Shaper
May 1989, The Journal of general virology,
Copied contents to your clipboard!