Regional differences in mitral cell development in mouse olfactory bulb. 2019

Uyen P Nguyen, and Fumiaki Imamura
Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.

Olfactory sensory neurons (OSNs) located in the dorsomedial and ventromedial regions of the olfactory epithelium (OE) are distinguished from one another based on their molecular expression patterns. This difference is reflected in the separation of the glomerular layer of the olfactory bulb (OB) into dorsomedial and ventrolateral regions. However, it is unclear whether a complementary separation is also evident in the projection neurons that innervate the OB glomeruli. In this study, we compared the development of the OB between different regions by focusing on the transcription factor, Tbx21, which is expressed by mitral and tufted cells in the mature OB. Examining the OB at different developmental ages, we found that Tbx21 expression commenced in the anteromedial region called the tongue-shaped area, followed by the dorsomedial and then ventrolateral areas. We also showed that the tongue-shaped area was innervated by the OSNs located in the most dorsomedial part of the ventrolateral OE, the V-zone:DM. Interestingly, the generation of OSNs occurred first in the dorsomedial zone including the V-zone:DM, suggesting a correlation between the time course of OSN generation in the OE and Tbx21 expression in their target region of the OB. In contrast, expression of vGluT1, which is also found in all mitral cells in the mature OB, was first detected in the ventrolateral region during development. Our findings demonstrate that the development of projection neurons occurs in a compartmentalized manner in the OB; tongue-shaped, dorsomedial, and ventrolateral areas, and that not all projection neurons follow the same developmental pathway.

UI MeSH Term Description Entries
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D051272 Glucose Transporter Type 1 A ubiquitously expressed glucose transporter that is important for constitutive, basal GLUCOSE transport. It is predominately expressed in ENDOTHELIAL CELLS and ERYTHROCYTES at the BLOOD-BRAIN BARRIER and is responsible for GLUCOSE entry into the BRAIN. Erythrocyte Glucose Transporter,GLUT-1 Protein,GLUT1 Protein,SLC2A1 Protein,Solute Carrier Family 2, Facilitated Glucose Transporter, Member 1 Protein,GLUT 1 Protein,Glucose Transporter, Erythrocyte

Related Publications

Uyen P Nguyen, and Fumiaki Imamura
June 2006, The Journal of comparative neurology,
Uyen P Nguyen, and Fumiaki Imamura
July 2008, Cerebral cortex (New York, N.Y. : 1991),
Uyen P Nguyen, and Fumiaki Imamura
March 2024, Molecular and cellular neurosciences,
Uyen P Nguyen, and Fumiaki Imamura
November 2008, Journal of the College of Physicians and Surgeons--Pakistan : JCPSP,
Uyen P Nguyen, and Fumiaki Imamura
May 2001, The Journal of comparative neurology,
Uyen P Nguyen, and Fumiaki Imamura
October 1973, The Journal of comparative neurology,
Uyen P Nguyen, and Fumiaki Imamura
June 2008, The European journal of neuroscience,
Uyen P Nguyen, and Fumiaki Imamura
September 2021, iScience,
Uyen P Nguyen, and Fumiaki Imamura
January 2012, Frontiers in systems neuroscience,
Copied contents to your clipboard!