Bacterial lipopolysaccharide-induced interferon-gamma production: roles of interleukin 1 and interleukin 2. 1986

J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek

Bacterial lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (PBMC) to produce interferon-gamma (IFN-gamma). Monocytes play a mandatory accessory role in this process, because purified T lymphocytes failed to produce IFN-gamma in response to LPS and the addition of 2% monocytes to T cell cultures resulted in an optimal LPS-induced IFN-gamma production. IFN-gamma production was abolished in the presence of monoclonal antibodies specific for HLA-DR antigen. Addition of exogenous interleukin 2 (IL 2) markedly enhanced IFN-gamma secretion by PBMC induced with LPS. The addition of anti-Tac antibody specific for IL 2 receptors abrogated IFN-gamma production, suggesting that an interaction of IL 2 with IL 2 receptors was involved. By using a specific antibody binding assay, LPS was shown to amplify IL 2 receptor expression on PBMC, whereas exogenous IL 2 showed only a negligible enhancing effect on the expression of its own receptors. Interleukin 1 (IL 1), a product of LPS-stimulated monocytes, potentiated IL 2-induced IFN-gamma production in the absence of LPS. Neither IL 1 nor IL 2 alone induced IFN-gamma production in purified T lymphocyte cultures. When added together, however, substantial levels of IFN-gamma were induced. An enhanced IL 2 receptor expression on T cells was also demonstrated as a result of the combined action of IL 1 and IL 2. These results suggest that induction of IFN-gamma by LPS is due mainly to the generation of IL 1 and an enhanced expression of IL 2 receptors.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
December 1998, The Journal of infectious diseases,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
September 1987, Journal of immunology (Baltimore, Md. : 1950),
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
June 1989, Immunology letters,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
February 1986, Journal of immunology (Baltimore, Md. : 1950),
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
January 1989, Regional immunology,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
January 1991, American journal of clinical pathology,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
March 1995, European journal of immunology,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
September 2007, The British journal of dermatology,
J Le, and J X Lin, and D Henriksen-DeStefano, and J Vilcek
January 2011, American journal of reproductive immunology (New York, N.Y. : 1989),
Copied contents to your clipboard!