Genetic control of serum neutralizing-antibody response to rabies vaccination and survival after a rabies challenge infection in mice. 1986

J W Templeton, and C Holmberg, and T Garber, and R M Sharp

Quantitative differences in serum neutralizing-antibody (SNAb) responses to rabies vaccination and survival after a rabies challenge infection between two inbred mice strains, C3H/J and C57BL/6J, were shown to be under genetic control. A 99% confidence limit calculated from the SNAb response titers of 14 C57BL/6J mice resulted in an upper limit for the SNAb response titer of C57BL/6J mice at 50.63. A SNAb titer less than or equal to 50.63 in response to rabies vaccination was assigned the phenotype of hyporesponder, and a SNAb titer greater than 50.63 in response to rabies vaccination was assigned the phenotype of hyperresponder in this study. The hyper-SNAb response to rabies vaccination and the higher frequency of survival after rabies challenge infection behave as Mendelian dominant alleles in F1 hybrids (C3H/J X C57BL/6J) and backcross (BC) (F1 [C3H/J X C57BL/6J] X C57BL/6J) progeny. Both a relatively hyper-SNAb response and a higher frequency of vaccine-inducible survival phenotypes occur in C3H/J mice. On the other hand, both the relatively hypo-SNAb response and a lower frequency of vaccine-inducible survival phenotypes behave as Mendelian recessive alleles and occur in C57BL/6J mice. C3H/J mice are H-2 Kk, and C57BL/6J mice are H-2 Kb. All three phenotypic traits (H-2 type, SNAb response, and survival after rabies challenge infection) segregate as independent (unlinked) monogenic traits in BC progeny (F1 [C3H/J X C57BL/6J] X C57BL/6J). The genetically controlled survival trait is inducible by rabies vaccination, but SNAb response is not a parameter that measures successful vaccine induction of preexposure protection from a rabies challenge infection in the BC progeny. The essential role of vaccination in developing preexposure protection in genetically responsive mice is confirmed, but indicates that in vitro measurements other than SNAb titers need to be developed to identify mice that have failed to achieve preexposure protection by rabies vaccination. This study confirms Lodmell's findings (D. L. Lodmell and B. Chesebro, J. Virol. 50:359-362, 1984; D. L. Lodmell, J. Exp. Med. 157:451-460, 1983) that susceptibility to rabies infection is genetically controlled in some mice strains. Additionally, this study indicates that conventional rabies vaccination even with more potent vaccines may not induce protection from infection in some genetically susceptible individuals.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011818 Rabies Acute VIRAL CNS INFECTION affecting mammals, including humans. It is caused by RABIES VIRUS and usually spread by contamination with virus-laden saliva of bites inflicted by rabid animals. Important animal vectors include the dog, cat, bat, fox, raccoon, skunk, and wolf. Encephalitic Rabies,Furious Rabies,Hydrophobia,Paralytic Rabies,Lyssa,Furious Raby,Lyssas,Rabies, Encephalitic,Rabies, Furious,Raby, Furious
D011820 Rabies virus The type species of LYSSAVIRUS causing rabies in humans and other animals. Transmission is mostly by animal bites through saliva. The virus is neurotropic multiplying in neurons and myotubes of vertebrates. Rabies viruses
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J W Templeton, and C Holmberg, and T Garber, and R M Sharp
March 2010, Vaccine,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
August 1976, Annals of internal medicine,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
August 2016, Journal of the American Veterinary Medical Association,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
January 1984, Journal of interferon research,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
January 1984, Annales de recherches veterinaires. Annals of veterinary research,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
April 1990, American journal of public health,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
January 1981, Transactions of the Royal Society of Tropical Medicine and Hygiene,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
January 1956, Bulletin of the World Health Organization,
J W Templeton, and C Holmberg, and T Garber, and R M Sharp
July 2014, Vaccine,
Copied contents to your clipboard!