Isolation and characterization of a lipopolysaccharide-specific bacteriophage of Pseudomonas aeruginosa. 1986

G S Temple, and P D Ayling, and S G Wilkinson

Phage H22 was isolated from sewage using Pseudomonas aeruginosa NCTC 8505 (serotype 0:3) as the host. Although not O-specific, this phage was found to have lipopolysaccharide (LPS) as a receptor. The broad host-range and lack of O-specificity of the phage suggested that its receptor site was in the core region of the LPS. Phage H22 had a Bradley type A structure. It was unaffected by chloroform and diethyl ether, and was stable between pH 5 and 8 and in the temperature range 0 to 60 degrees C. The adsorption rate constant was 14.6 X 10(-9) ml min-1. The phage had a latent period of 43 min, with a rise time of 18 min and a burst size of 6. The adsorption of phage to whole cells and LPS occurred over a broad pH range. Maximum adsorption occurred at 50 degrees C and pH 7.5 in the presence of 0.001 M Ca2+.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D012722 Sewage Refuse liquid or waste matter carried off by sewers. Sludge,Sludge Flocs
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

G S Temple, and P D Ayling, and S G Wilkinson
October 1976, The Journal of general virology,
G S Temple, and P D Ayling, and S G Wilkinson
September 2021, Scientific reports,
G S Temple, and P D Ayling, and S G Wilkinson
November 1991, Genetika,
G S Temple, and P D Ayling, and S G Wilkinson
November 1981, Journal of virology,
G S Temple, and P D Ayling, and S G Wilkinson
March 2022, Journal of Nepal Health Research Council,
G S Temple, and P D Ayling, and S G Wilkinson
June 1989, Canadian journal of microbiology,
G S Temple, and P D Ayling, and S G Wilkinson
February 1977, Journal of general microbiology,
G S Temple, and P D Ayling, and S G Wilkinson
August 1986, The Journal of biological chemistry,
Copied contents to your clipboard!