Characterization of the reaction of L-serine and indole with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. 1986

W F Drewe, and M F Dunn

The pre-steady-state reaction of indole and L-serine with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase has been investigated under different premixing conditions with rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy for the spectral range 300-550 nm. When alpha 2 beta 2 was mixed with indole and L-serine, the reaction of alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3) with rate constants identical with the three relaxations seen in the partial reaction with L-serine [Drewe, W.F., Jr., & Dunn, M.F. (1985) Biochemistry 24, 3977-3987]. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to be similar to the effects observed in the reaction with serine only. The observed spectral changes and isotope effects indicate that the aldimine of L-serine and PLP and the first quinoid derived from this external aldimine are transient species that accumulate during tau 1. Conversion of these intermediates to the alpha-aminoacrylate Schiff base during tau 2 and tau 3 limits the rate of formation of the second quinoidal species (lambda max 476 nm) generated via C-C bond formation between indole and the alpha-aminoacrylate intermediate. The pre-steady-state reaction of the alpha 2 beta 2-serine mixture with indole is comprised of four relaxations (1/tau 1* greater than 1/tau 2* greater than 1/tau 3* greater than 1/tau 4*).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D014367 Tryptophan Synthase An enzyme that catalyzes the conversion of L-serine and 1-(indol-3-yl)glycerol 3-phosphate to L-tryptophan and glyceraldehyde 3-phosphate. It is a pyridoxal phosphate protein that also catalyzes the conversion of serine and indole into tryptophan and water and of indoleglycerol phosphate into indole and glyceraldehyde phosphate. (From Enzyme Nomenclature, 1992) EC 4.2.1.20. Tryptophan Synthetase,Synthase, Tryptophan,Synthetase, Tryptophan

Related Publications

W F Drewe, and M F Dunn
April 1983, Biotechnology and bioengineering,
W F Drewe, and M F Dunn
January 1983, European journal of biochemistry,
W F Drewe, and M F Dunn
January 1995, Methods in enzymology,
W F Drewe, and M F Dunn
February 1983, Archives of biochemistry and biophysics,
Copied contents to your clipboard!