Molecular host mimicry and manipulation in bacterial symbionts. 2019

A Carolin Frank
Life and Environmental Sciences, 5200 North Lake Rd, University of California Merced, Merced, CA 95343, USA.

It is common among intracellular bacterial pathogens to use eukaryotic-like proteins that mimic and manipulate host cellular processes to promote colonization and intracellular survival. Eukaryotic-like proteins are bacterial proteins with domains that are rare in bacteria, and known to function in the context of a eukaryotic cell. Such proteins can originate through horizontal gene transfer from eukaryotes or, in the case of simple repeat proteins, through convergent evolution. Recent studies of microbiomes associated with several eukaryotic hosts suggest that similar molecular strategies are deployed by cooperative bacteria that interact closely with eukaryotic cells. Some mimics, like ankyrin repeats, leucine rich repeats and tetratricopeptide repeats are shared across diverse symbiotic systems ranging from amoebae to plants, and may have originated early, or evolved independently in multiple systems. Others, like plant-mimicking domains in members of the plant microbiome are likely to be more recent innovations resulting from horizontal gene transfer from the host, or from microbial eukaryotes occupying the same host. Host protein mimics have only been described in a limited set of symbiotic systems, but are likely to be more widespread. Systematic searches for eukaryote-like proteins in symbiont genomes could lead to the discovery of novel mechanisms underlying host-symbiont interactions.

UI MeSH Term Description Entries
D000067558 Biological Mimicry Resemblance in appearance, structure, function, sound, scent or behavior between related or unrelated species, occurring in the same geographic location. Aposematism,Batesian Mimicry,Biological Camouflage,Crypses,Mullerian Mimicry,Aposematisms,Batesian Mimicries,Biological Camouflages,Camouflage, Biological,Camouflages, Biological,Mimicries, Batesian,Mimicries, Mullerian,Mimicry, Batesian,Mimicry, Biological,Mimicry, Mullerian,Mullerian Mimicries
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013559 Symbiosis The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other. Endosymbiosis,Commensalism,Mutualism
D056890 Eukaryota One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista. Eukaryotes,Eucarya,Eukarya,Eukaryotas,Eukaryote

Related Publications

Copied contents to your clipboard!