Identification of a high affinity leukotriene C4-binding protein in rat liver cytosol as glutathione S-transferase. 1986

F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen

A soluble high affinity binding unit for leukotriene (LT) C4 in the high speed supernatant of rat liver homogenate was characterized at 4 degrees C as having a single type of saturable affinity site with a dissociation constant of 0.77 +/- 0.27 nM (mean +/- S.E., n = 5). The binding activity was identified as the liver cytosolic subunit 1 (Ya) of glutathione S-transferase, commonly known as ligandin, by co-purification with the catalytic activity during DEAE-cellulose column chromatography and 11,12,14,15-tetrahydro-LTC4 (LTC2)-affinity gel column chromatography; resolution into two major bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Mr 23,000 and 25,000, of which only the smaller protein was labeled with [3H]LTC4 coupled via a photoaffinity cross-linking reagent; and immunodiffusion analysis with rabbit antiserum to glutathione S-transferase which showed a line of identity between the purified LTC4-binding protein and rat liver glutathione S-transferase. The affinity-purified binding protein bound 800 pmol of [3H] LTC4/mg of protein and possessed 12 mumol/min/mg of glutathione transferase activity as assayed with 1-chloro-2,4-dinitrobenzene as substrate. The enzyme activity of the cytosolic LTC4-binding protein was inhibited by submicromolar quantities of unlabeled LTC4, and the binding activity for [3H]LTC4 was blocked by the ligandin substrates, hematin and bilirubin. The high affinity interaction between LTC4 and glutathione S-transferase suggests that glutathione S-transferase may have a role in LTC4 disposition and that previous studies of LTC4 binding to putative receptors in nonresponsive tissues may require redefinition of the binding unit.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
June 1984, Biochemical and biophysical research communications,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
October 1988, Biochemical and biophysical research communications,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
October 1985, Archives of biochemistry and biophysics,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
April 1994, The Journal of biological chemistry,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
February 1989, The American journal of tropical medicine and hygiene,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
November 1988, Biochemistry international,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
January 1985, Methods in enzymology,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
September 1981, Biochemical and biophysical research communications,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
December 1987, European journal of biochemistry,
F F Sun, and L Y Chau, and B Spur, and E J Corey, and R A Lewis, and K F Austen
May 2000, Archives of toxicology,
Copied contents to your clipboard!