Site-specific mutagenesis of cysteine 148 to serine in the lac permease of Escherichia coli. 1986

H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback

Oligonucleotide-directed, site-specific mutagenesis has been utilized to modify the lac Y gene of Escherichia coli such that Cys148 in the lac permease is converted to Ser. A mutagenesis protocol is used that significantly improves the efficiency of mutant recovery by in vitro methylation of closed-circular heteroduplex DNA containing the mutation, followed by nicking with HindIII in the presence of ethidium bromide and heat denaturation prior to transfection. In contrast to Gly148 permease (Trumble, W.R., Viitanen, P.V., Sarkar, H.K., Poonian, M.S., and Kaback, H. R. (1984) Biochem. Biophys. Res. Commun. 119, 860-867), permease containing Ser at position 148 catalyzes active lactose transport at a rate comparable to wild-type permease. Like Gly148 permease, however, transport activity is less sensitive to inactivation by N-ethylmaleimide, and galactosyl-1-thio-beta-D-galactopyranoside affords no protection against inactivation. The observations provide strong support for the contention that Cys148 is obligatory for substrate protection against inactivation by sulfhydryl reagents, but does not play an essential role in lactose:H+ symport.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009692 Nucleic Acid Heteroduplexes Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids. Heteroduplexes, Nucleic Acid,Heteroduplex DNA,Acid Heteroduplexes, Nucleic,DNA, Heteroduplex
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide

Related Publications

H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
January 1986, Methods in enzymology,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
November 1988, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
July 1989, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
October 1994, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
February 1987, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
January 1990, Research in microbiology,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
October 1994, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
July 1995, Biochemistry,
H K Sarkar, and D R Menick, and P V Viitanen, and M S Poonian, and H R Kaback
July 1994, Biochemistry,
Copied contents to your clipboard!