Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. 2019

Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
Institute of Translational Research; Laboratory of Infectious Disease Research, Ochsner Clinic Foundation, New Orleans, LA, USA.

Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. The World Health Organization's data on antibiotic-resistant 'priority pathogens' reports carbapenem-resistant A. baumannii as a pathogen which is in critical need of research and development of new antimicrobials. Emerging resistance against polymyxins, last-resort drugs for carbapenem-resistant A. baumannii, increases the need for new therapeutic approaches such as synergistic combinations. Nisin, an antibacterial peptide produced by the Gram-positive bacteria L. lactis, is a US Food and Drug Administration approved food preservative with bactericidal action predominantly against other Gram-positive bacteria. A 2008 study reported that topical nisin was effective against staphylococcal mastitis in humans. Additionally, nisin has shown activity against Gram-negative bacteria in combination with antimicrobials such as polymyxin B. A recent in vitro study reported that nisin and polymyxin B exhibited synergistic activity against one isolate each of A. baumannii, Acinetobacter lwoffii and Acinetobacter calcoaceticus using time-kill assay and checkerboard technique. We evaluated the synergistic potential of nisin and polymyxin B against 15 unique clinical A. baumannii isolates using time-kill assay. Three of eight (38%) extensively drug-resistant and six of seven (86%) pandrug-resistant A. baumannii isolates showed synergy with one or more combinations of nisin and polymyxin B. The synergy seen with the use of lower concentrations of polymyxin B may help in reducing the dose-dependent side effects. Additional studies involving pharmacokinetics and pharmacodynamics of nisin are required to explore clinical possibilities.

UI MeSH Term Description Entries
D009561 Nisin A 34-amino acid polypeptide antibiotic produced by Streptococcus lactis. It has been used as a food preservative in canned fruits and vegetables, and cheese.
D011112 Polymyxin B A mixture of polymyxins B1 and B2, obtained from BACILLUS POLYMYXA strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for treatment of infections with gram-negative bacteria, but may be neurotoxic and nephrotoxic. Aerosporin,Polymyxin B Sulfate
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000151 Acinetobacter Infections Infections with bacteria of the genus ACINETOBACTER. Mimae Infections,Infections, Acinetobacter,Infections, Mimae,Acinetobacter Infection,Infection, Acinetobacter,Infection, Mimae,Mimae Infection
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug
D040981 Acinetobacter baumannii A species of gram-negative, aerobic bacteria, commonly found in the clinical laboratory, and frequently resistant to common antibiotics. Bacterium anitratum

Related Publications

Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
June 2015, International journal of antimicrobial agents,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
June 2009, Emerging infectious diseases,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
September 2010, International journal of antimicrobial agents,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
December 2020, Molecular biology reports,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
March 2019, Journal of medical microbiology,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
January 2018, Antimicrobial resistance and infection control,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
July 2020, Journal of medical microbiology,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
January 2018, Frontiers in pharmacology,
Varsha M Thomas, and Ryan M Brown, and Deborah S Ashcraft, and George A Pankey
January 2012, The Annals of pharmacotherapy,
Copied contents to your clipboard!