BTNL2-Ig Protein Attenuates Type 1 Diabetes in Non-Obese Diabetic (NOD) Mice. 2019

Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
Department of Allied Health Sciences, University of Connecticut, Storrs, CT, 06269, USA.

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing β-cells are destroyed. Although butyrophilin-like 2 (BTNL2) has been shown to be a negative T cell regulator in vitro, its ability to inhibit T cell responses in vivo has not been determined. In this study, the effect of a recombinant BTNL2-IgG2a Fc (rBTNL2-Ig) fusion protein on T1D development in vivo is determined. It is shown here that in vivo administration of rBTNL2-Ig ameliorates T1D in non-obese diabetic (NOD) mice. This is associated with the ability of rBTNL2-Ig to inhibit the proliferation, activation, and inflammatory cytokine production from autoreactive T cells in vivo. In addition, rBTNL2-Ig treatment increases the generation of regulatory T cells. The results suggest that targeting the BTNL2 pathway has the potential to be used in the prevention and treatment of patients with T1D.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000071797 Butyrophilins A family of mammalian membrane glycoproteins characterized by extracellular IMMUNOGLOBULIN DOMAINS. Some members also have an intracellular B30.2-SPRY DOMAIN or SPRY DOMAIN. The butyrophilin protein (BTN) is expressed by MAMMARY GLAND EPITHELIUM during LACTATION; whereas other members are widely expressed in other tissues, including skeletal muscle, intestine, ERYTHROID CELLS (ERMAP protein); and nerve tissue (MYELIN-OLIGODENDROCYTE GLYCOPROTEIN). Butyrophilin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse

Related Publications

Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
April 2019, Archives of toxicology,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
January 2012, Methods in molecular biology (Clifton, N.J.),
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
January 2019, Frontiers in immunology,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
June 2019, Toxics,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
January 2009, Biological & pharmaceutical bulletin,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
March 1989, Clinical and experimental immunology,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
April 2019, Archives of toxicology,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
December 2023, FEBS open bio,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
May 1999, Clinical and experimental immunology,
Xiaohong Tian, and Yujun Lin, and Cheng Cui, and Min Su, and Laijun Lai
February 2008, Autonomic neuroscience : basic & clinical,
Copied contents to your clipboard!