Effect of elastase on prostacyclin synthesis in aortic smooth muscle cells. 1986

H Kawaguchi, and H Yasuda

The effects of elastase on prostacyclin biosynthesis in cultured rat aortic smooth muscle cells were investigated. Prostacyclin is the major product formed from arachidonic acid by aortic smooth muscle cells. When intact cells were incubated with elastase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident. However, the addition of elastase directly to the cell-free homogenates did not show any effects on prostacyclin biosynthesis. The maximal effect of elastase on the stimulation of prostacyclin biosynthesis without any cellular damage was observed at a concentration of 50 unit/ml elastase. Elastase also caused a marked release of arachidonic acid. At higher concentrations of elastase (75-100 units/ml), the release of arachidonic acid and prostacyclin synthesis was observed, but, at these concentrations of elastase, cells were slightly damaged. On the other hand, the releases of prostacyclin and arachidonic acid were markedly enhanced, when cells were preincubated with elastase (1 unit/ml) for 3 days. These results indicate that elastase, even at low concentrations, causes the releases of arachidonic acid and prostacyclin, especially when aortic smooth muscle cells are pre-treated with elastase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D015121 6-Ketoprostaglandin F1 alpha The physiologically active and stable hydrolysis product of EPOPROSTENOL. Found in nearly all mammalian tissue. 6-Keto-PGF1 alpha,6-Oxo-PGF1 alpha,6-Oxoprostaglandin F1 alpha,6 Ketoprostaglandin F1 alpha,6 Keto PGF1 alpha,6 Oxo PGF1 alpha,6 Oxoprostaglandin F1 alpha,F1 alpha, 6-Ketoprostaglandin,F1 alpha, 6-Oxoprostaglandin,alpha, 6-Keto-PGF1,alpha, 6-Ketoprostaglandin F1,alpha, 6-Oxo-PGF1,alpha, 6-Oxoprostaglandin F1
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

H Kawaguchi, and H Yasuda
January 1984, VASA. Zeitschrift fur Gefasskrankheiten,
H Kawaguchi, and H Yasuda
November 1989, British journal of pharmacology,
H Kawaguchi, and H Yasuda
October 1986, Experimental and molecular pathology,
H Kawaguchi, and H Yasuda
March 1991, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
H Kawaguchi, and H Yasuda
October 1989, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
H Kawaguchi, and H Yasuda
January 1988, Biokhimiia (Moscow, Russia),
H Kawaguchi, and H Yasuda
January 1990, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!