alpha-Aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum. 1986

W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith

Intracellular amino acid pools in four Penicillium chrysogenum strains, which differed in their ability to produce penicillin, were determined under conditions supporting growth without penicillin production and under conditions supporting penicillin production. A significant correlation between the rate of penicillin production and the intracellular concentration of alpha-aminoadipate was observed, which was not shown with any other amino acid in the pool. In replacement cultivation, penicillin production was stimulated by alpha-aminoadipate, but not by valine or cysteine. Exogenously added alpha-aminoadipate (2 or 3 mM) maximally stimulated penicillin synthesis in two strains of different productivity. Under these conditions intracellular concentrations of alpha-aminoadipate were comparable in the two strains in spite of the higher rate of penicillin production in the more productive strain. Results suggest that the lower penicillin titre of strain Q 176 is due to at least two factors: (i) the intracellular concentration of alpha-aminoadipate is insufficient to allow saturation of any enzyme which is rate limiting in the conversion of alpha-aminoadipate to penicillin and (ii) the level of an enzyme, which is rate limiting in the conversion of alpha-aminoadipate to penicillin, is lower in Q 176 (relative to strain D6/1014/A). Results suggest that the intracellular concentration of alpha-aminoadipate in strain D6/1014/A is sufficiently high to allow saturation of the rate-limiting penicillin biosynthetic enzyme in that strain. The basis of further correlation of intracellular alpha-aminoadipate concentration and penicillin titre among strains D6/1014/A, P2, and 389/3, the three highest penicillin producers studied here, remains to be established.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D010407 Penicillium A mitosporic Trichocomaceae fungal genus that develops fruiting organs resembling a broom. When identified, teleomorphs include EUPENICILLIUM and TALAROMYCES. Several species (but especially PENICILLIUM CHRYSOGENUM) are sources of the antibiotic penicillin. Penicilliums
D010408 Penicillium chrysogenum A mitosporic fungal species used in the production of penicillin. Penicillium chrysogeum,Penicillium notatum
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000600 Amino Acids, Dicarboxylic Dicarboxylic Amino Acids,Acids, Dicarboxylic Amino
D012443 Saccharopine Dehydrogenases Amine oxidoreductases that use either NAD+ (EC 1.5.1.7) or NADP+ (EC 1.5.1.8) as an acceptor to form L-LYSINE or NAD+ (EC 1.5.1.9) or NADP+ (EC 1.5.1.10) as an acceptor to form L-GLUTAMATE. Deficiency of this enzyme causes HYPERLYSINEMIAS. Saccharopine Dehydrogenase,Lysine-2-Oxoglutarate Reductase,Lysine-Ketoglutarate Reductase,Saccharopine Dehydrogenase (NAD+, L-Glutamate Forming),Saccharopine Dehydrogenase (NAD+, L-Lysine Forming),Saccharopine Dehydrogenase (NADP+, L-Glutamate Forming),Saccharopine Dehydrogenase (NADP+, L-Lysine Forming),Dehydrogenase, Saccharopine,Dehydrogenases, Saccharopine,Lysine 2 Oxoglutarate Reductase,Lysine Ketoglutarate Reductase,Reductase, Lysine-2-Oxoglutarate,Reductase, Lysine-Ketoglutarate

Related Publications

W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
August 1992, Canadian journal of microbiology,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
December 1968, The Biochemical journal,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
April 1989, FEMS microbiology letters,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
November 1989, FEMS microbiology letters,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
November 1979, Journal of general microbiology,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
July 2013, Metabolic engineering,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
August 1963, Antibiotiki,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
July 1984, The Journal of antibiotics,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
August 2011, Applied and environmental microbiology,
W M Jaklitsch, and W Hampel, and M Röhr, and C P Kubicek, and G Gamerith
September 1956, Applied microbiology,
Copied contents to your clipboard!