In-vitro secretion of inhibin-like activity by Sertoli cells from normal and prenatally irradiated immature rats. 1986

A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen

The influence of in-vitro conditions on the production of inhibin by Sertoli cells from 21-day-old normal and prenatally irradiated rat testes was studied by measuring inhibin activity in culture media, using the suppression of the release of FSH from cultured rat pituitary cells. Sertoli cells secreted inhibin-like activity during at least 21 days of culture, and cells cultured at 37 degrees C produced significantly more inhibin than those cultured at 32 degrees C. The presence of fetal calf serum had no significant effect on inhibin production at 32 degrees C, while at 37 degrees C the production was decreased. The presence of ovine FSH stimulated inhibin secretion, while inhibin concentrations in Sertoli cell culture media were decreased after the addition of testosterone. Testosterone, added together with ovine FSH, suppressed inhibin secretion when compared with the levels found in the presence of FSH alone. The presence of spermatogenic cells decreased the release of inhibin. From these results it was concluded that both Sertoli cells isolated from normal immature rat testes and those from testes without spermatogenic cells can secrete inhibin-like activity in culture. A number of discrepancies with in-vivo observations was observed. Therefore, it is likely that the in-vivo situation is too complicated for direct study of the regulation of inhibin production, because of mutual interactions between the testicular compartments.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D008297 Male Males
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis

Related Publications

A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
October 1990, Endocrinology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
August 1989, Endocrinology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
November 1990, The Journal of clinical endocrinology and metabolism,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
October 1988, Molecular and cellular endocrinology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
April 1976, Biochemical and biophysical research communications,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
October 1998, The Journal of physiology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
January 1992, Biology of reproduction,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
January 1999, Journal of andrology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
February 1982, International journal of andrology,
A M Ultee-van Gessel, and F G Leemborg, and F H de Jong, and H J van der Molen
October 1997, The Journal of endocrinology,
Copied contents to your clipboard!