Microvascular Mechanisms of Polyphosphate-Induced Neutrophil-Endothelial Cell Interactions in vivo. 2019

Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
Department of Clinical Sciences, Section of Surgery, Lund University, Malmö, Sweden.

BACKGROUND Polyphosphates (PolyPs) have been reported to exert pro-inflammatory effects. However, the molecular mechanisms regulating PolyP-provoked tissue accumulation of leukocytes are not known. The aim of the present investigation was to determine the role of specific adhesion molecules in PolyP-mediated leukocyte recruitment. METHODS PolyPs and TNF-α were intrascrotally administered, and anti-P-selectin, anti-E-selectin, anti-P-selectin glycoprotein ligand-1 (PSGL-1), anti-membrane-activated complex-1 (Mac-1), anti-lymphocyte function antigen-1 (LFA-1), and neutrophil depletion antibodies were injected intravenously or intraperitoneally. Intravital microscopy of the mouse cremaster microcirculation was used to examine leukocyte-endothelium interactions and recruitment in vivo. RESULTS Intrascrotal injection of PolyPs increased leukocyte accumulation. Depletion of neutrophils abolished PolyP-induced leukocyte-endothelium interactions, indicating that neutrophils were the main leukocyte subtype responding to PolyP challenge. Immunoneutralization of P-selectin and PSGL-1 abolished PolyP-provoked neutrophil rolling, adhesion, and emigration. Moreover, immunoneutralization of Mac-1 and LFA-1 had no impact on neutrophil rolling but markedly reduced neutrophil adhesion and emigration evoked by PolyPs. CONCLUSIONS These results suggest that P-selectin and PSGL-1 exert important roles in PolyP-induced inflammatory cell recruitment by mediating neutrophil rolling. In addition, our data show that Mac-1 and LFA-1 are necessary for supporting PolyP-triggered firm adhesion of neutrophils to microvascular endothelium. These novel findings define specific molecules as potential targets for pharmacological intervention in PolyP-dependent inflammatory diseases.

UI MeSH Term Description Entries
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011122 Polyphosphates Linear polymers in which orthophosphate residues are linked with energy-rich phosphoanhydride bonds. They are found in plants, animals, and microorganisms. Polyphosphate
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016169 Lymphocyte Function-Associated Antigen-1 An integrin heterodimer widely expressed on cells of hematopoietic origin. CD11A ANTIGEN comprises the alpha chain and the CD18 antigen (CD18 ANTIGENS) the beta chain. Lymphocyte function-associated antigen-1 is a major receptor of T-CELLS; B-CELLS; and GRANULOCYTES. It mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by NATURAL KILLER CELLS and granulocytes. Intracellular adhesion molecule-1 has been defined as a ligand for lymphocyte function-associated antigen-1. LFA-1,Leukocyte Function Associated Antigen-1,Integrin alphaLbeta2,Antigen-1, Lymphocyte Function-Associated,Lymphocyte Function Associated Antigen 1,alphaLbeta2, Integrin
D016177 Macrophage-1 Antigen An adhesion-promoting leukocyte surface membrane heterodimer. The alpha subunit consists of the CD11b ANTIGEN and the beta subunit the CD18 ANTIGEN. The antigen, which is an integrin, functions both as a receptor for complement 3 and in cell-cell and cell-substrate adhesive interactions. CR3 Receptor,Complement 3 Receptor,Integrin alphaMbeta2,Mac-1 Antigen,Receptor, Complement 3,Adhesive Receptor Mac-1,Integrin alpha(M)beta(2),Integrin alpha-M beta-2,Mac-1 Adhesive Receptor,Mac-1 Receptor,Mo1 Antigen Receptor,Mo1 Glycoprotein Receptor,Receptor, CR3,Receptor, Mo1 Antigen,Receptor, Mo1 Glycoprotein,Adhesive Receptor, Mac-1,Antigen Receptor, Mo1,Antigen, Macrophage-1,Glycoprotein Receptor, Mo1,Integrin alpha M beta 2,Mac 1 Adhesive Receptor,Mac 1 Antigen,Mac 1 Receptor,Macrophage 1 Antigen,Receptor, Mac-1 Adhesive,alpha-M beta-2, Integrin,alphaMbeta2, Integrin

Related Publications

Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
August 1989, The Journal of investigative dermatology,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
January 1993, Agents and actions. Supplements,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
February 1994, The American journal of physiology,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
May 2008, Journal of the American Society of Nephrology : JASN,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
September 1998, Nihon rinsho. Japanese journal of clinical medicine,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
January 1993, Annual review of physiology,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
August 2008, Microvascular research,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
March 1999, Circulation research,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
August 1986, The Journal of clinical investigation,
Feifei Du, and Yongzhi Wang, and Zhiyi Ding, and Matthias W Laschke, and Henrik Thorlacius
February 1994, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!