Autocatalytic quinone methide formation from mitomycin c. 1986

D M Peterson, and J Fisher

Mitomycin c in the presence of NADPH and brewers' yeast NADPH: (acceptor) oxidoreductase (Old Yellow enzyme, EC 1.6.99.1) is transformed, at pH 8.0 and with anaerobicity, to two major mitosene products (the cis- and trans-1-hydroxy-2,7-diaminomitosenes; respective yields of 45 and 30%). These arise by covalent trapping by solvent of a quinone methide intermediate, obtained by rearrangement of the mitomycin c hydroquinone. At lower pH (6.5), the major product of this reaction is 2,7-diaminomitosene, which arises by covalent trapping of the quinone methide by H+. In the former instance the quinone methide acts as an electrophile and in the latter as a nucleophile. A detailed kinetic analysis indicates that the role of the NADPH and Old Yellow enzyme is to initiate an autocatalytic reaction, propagated by mitomycin c reduction by the mitosene hydroquinones (arising by the electrophilic pathway). The evidence supporting this conclusion is the formation of oxidized mitosene products, under the rigorously anaerobic reaction circumstance, the nonstoichiometric participation of NADPH, a dependence of the velocity on the total mitomycin c concentration, the pH dependence of the reaction, and the accurate simulation of the overall kinetic course with a mathematical model of the autocatalytic pathway. These observations indicate that the autocatalytic pathway may be dominant during in vitro mitomycin c anaerobic reductive activation by other reducing agents and that (as with anthracycline reductive activation) oxidation of the mitosene hydroquinone obtained from nucleophile addition to the quinone methide may be a necessary event for the formation of stable covalent adducts in vivo.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

D M Peterson, and J Fisher
December 2019, Journal of the American Chemical Society,
D M Peterson, and J Fisher
June 2017, The Journal of organic chemistry,
D M Peterson, and J Fisher
February 1993, Chemico-biological interactions,
D M Peterson, and J Fisher
November 1998, Phytochemistry,
D M Peterson, and J Fisher
June 2000, Archives of biochemistry and biophysics,
D M Peterson, and J Fisher
January 1991, Advances in experimental medicine and biology,
D M Peterson, and J Fisher
May 1997, The Journal of organic chemistry,
D M Peterson, and J Fisher
May 1999, Journal of natural products,
D M Peterson, and J Fisher
March 1999, Journal of natural products,
Copied contents to your clipboard!