Embryogenesis of the peristaltic reflex. 2019

Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.

Neurogenic gut movements start after longitudinal smooth muscle differentiation in three species (mouse, zebrafish, chicken), and at E16 in the chicken embryo. The first activity of the chicken enteric nervous system is dominated by inhibitory neurons. The embryonic enteric nervous system electromechanically couples circular and longitudinal spontaneous myogenic contractions, thereby producing a new, rostro-caudally directed bolus transport pattern: the migrating motor complex. The response of the embryonic gut to mechanical stimulation evolves from a symmetric, myogenic response at E12, to a neurally mediated, polarized, descending inhibitory, 'law of the intestine'-like response at E16. High resolution, whole-mount 3D reconstructions are presented of the enteric nervous system of the chicken embryo at the neural-control stage E16 with the iDISCO+ tissue clarification technique. Gut motility is a complex transport phenomenon involving smooth muscle, enteric neurons, glia and interstitial cells of Cajal. Because these different cells differentiate and become active at different times during embryo development, studying the ontogenesis of motility offers a unique opportunity to 'time-reverse-engineer' the peristaltic reflex. Working on chicken embryo intestinal explants in vitro, we found by spatio-temporal mapping and signal processing of diameter and position changes that motility follows a characteristic sequence of increasing complexity: (1) myogenic circular smooth muscle contractions from E6 to E12 that propagate as waves along the intestine, (2) overlapping and independent, myogenic, low-frequency, bulk longitudinal smooth muscle contractions around E14, and (3) tetrodotoxin-sensitive coupling of longitudinal and circular contractions by the enteric nervous system as from E16. Inhibition of nitric oxide synthase neurons shows that the coupling consists in nitric oxide-mediated relaxation of circular smooth muscle when the longitudinal muscle layer is contracted. This mechanosensitive coupling gives rise to a directional, cyclical, propagating bolus transport pattern: the migrating motor complex. We further reveal a transition to a polarized, descending, inhibitory reflex response to mechanical stimulation after neuronal activity sets in at E16. This asymmetric response is the elementary mechanism responsible for peristaltic transport. We finally present unique high-resolution 3D reconstructions of the chicken enteric nervous system at the neural-control stage based on confocal imaging of iDISCO+ clarified tissues. Our study shows that the enteric nervous system gives rise to new peristaltic transport patterns during development by coupling spontaneous circular and longitudinal smooth muscle contraction waves.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra

Related Publications

Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
December 1979, Biological cybernetics,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
June 1991, The Italian journal of gastroenterology,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
August 1965, Archives internationales de pharmacodynamie et de therapie,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
August 1995, The American journal of physiology,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
March 1968, The Indian journal of medical research,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
June 1996, Neurogastroenterology and motility,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
August 1960, Nature,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
March 1948, Federation proceedings,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
October 1963, Indian journal of physiology and pharmacology,
Nicolas R Chevalier, and Nicolas Dacher, and Cécile Jacques, and Lucas Langlois, and Chloé Guedj, and Orestis Faklaris
June 1967, The Indian journal of medical research,
Copied contents to your clipboard!