Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein. Its regulation by calmodulin. 1986

Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai

Two major brain microtubule-associated proteins (MAPs), MAP2 and tau, were found to bind to the intermediate filaments reassembled from neurofilament 70-kDa subunit protein (= 70-kDa filaments). The binding was saturable. The apparent dissociation constant (KD) for the binding of MAP2 to the 70-kDa filaments was estimated to be 4.8 X 10(-7) M, and the maximum binding reached 1 mol of MAP2/approximately 30 mol of 70-kDa protein. The apparent KD for the tau binding was 1.6 X 10(-6) M, and the maximum binding was 1 mol of tau/approximately 3 mol of 70-kDa protein. It was also found that MAP2 and tau did not compete with each other for binding to the 70-kDa filaments. Most interestingly, calmodulin, a ubiquitous Ca2+-binding protein in eukaryotic cells, was found to inhibit the binding of MAP2 and tau to the 70-kDa filaments. The inhibition by calmodulin was regulated by changes in Ca2+ concentration around 10(-6) M, and was canceled by trifluoperazine, a calmodulin inhibitor.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
December 1987, European journal of biochemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
October 1985, The Journal of biological chemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
January 1984, The Journal of biological chemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
September 1990, Molecular and cellular biochemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
September 1999, European journal of biochemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
December 2002, Archives of biochemistry and biophysics,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
July 1984, The Journal of biological chemistry,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
February 1989, Journal of neuroscience research,
Y Miyata, and M Hoshi, and E Nishida, and Y Minami, and H Sakai
February 1990, Journal of molecular biology,
Copied contents to your clipboard!