SENP2 suppresses NF-κB activation and sensitizes breast cancer cells to doxorubicin. 2019

Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
Department of the Thyroid and Breast Tumor Surgery, The First Affiliated Hospital of Henan University of Science and Technology, China.

Doxorubicin is a chemotherapeutic agent commonly used to treat breast cancer. However, breast cancer often develops drug resistance, leading to disease recurrence and poor prognosis. Delineating the mechanisms underlying drug resistance is imperative for overcoming the challenge of treating doxorubicin-resistant breast cancer. In this study, by identifying the possible role of Sentrin/SUMO-specific proteases (SENPs) in doxorubicin resistance, we show here that among the 6 members of SENPs, only SENP2 is downregulated in doxorubicin-resistant MCF-7 (MCF-7/adr) and MDA-MB-231 (dr) breast cancer cells, as compared with sensitive counterparts. In addition, functionally, SENP2 overexpression resensitizes resistant breast cancer cells to doxorubicin treatment, and its knockdown confers doxorubicin resistance in sensitive ones. Moreover, NF-κB pathway is activated in MCF-7/adr cells, however, treatment with Bay 11-7085, one specific inhibitor of this pathway, reverses resistance to doxorubicin, suggesting that NF-κB pathway activation contributes to doxorubicin resistance in MCF-7/adr cells. We further show that SENP2 overexpression enhances NEMO deSUMOylation and suppresses NF-κB activation particularly in MCF-7/adr cells. Furthermore, SENP2 overexpression-induced sensitivity of MCF-7/adr cells to doxorubicin is drastically abrogated when treated with NF-κB pathway activator, thus establishing a causal link between SENP2-suppressed NF-κB pathway and enhanced doxorubicin sensitivity in breast cancer cells. Overall, this study reveals a novel function of SENP2 in counteracting doxorubicin resistance in breast cancer, and highlights the critical role of NF-κB suppression in mediating this effect.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D051550 I-kappa B Kinase A protein serine-threonine kinase that catalyzes the PHOSPHORYLATION of I KAPPA B PROTEINS. This enzyme also activates the transcription factor NF-KAPPA B and is composed of alpha and beta catalytic subunits, which are protein kinases and gamma, a regulatory subunit. CHUK Kinase,Conserved Helix-Loop-Helix Ubiquitous Kinase,I Kappa B alpha-Associated Protein Kinase,I kappa B Kinase,IKBKB,IKK 1 Kinase,IKK 2 Kinase,IKK alpha,IKK beta,IKK epsilon,IKK gamma,IKKepsilon,IkappaB Kinase,IkappaB Kinase alpha,IkappaB Kinase beta,IkappaB Kinase epsilon,IkappaB Kinase gamma,IkappaBalpha Kinase,NF-kappaB Essential Modifier,NK-kappa B-Activating Kinase NAK,B Kinase, I-kappa,Conserved Helix Loop Helix Ubiquitous Kinase,Essential Modifier, NF-kappaB,I Kappa B alpha Associated Protein Kinase,Kinase alpha, IkappaB,Kinase beta, IkappaB,Kinase epsilon, IkappaB,Kinase, I-kappa B,Kinase, IkappaB,NF kappaB Essential Modifier,NK kappa B Activating Kinase NAK
D058207 Sumoylation A type of POST-TRANSLATIONAL PROTEIN MODIFICATION by SMALL UBIQUITIN-RELATED MODIFIER PROTEINS (also known as SUMO proteins). SUMO-Conjugation,SUMO Conjugation,SUMO-Conjugations,Sumoylations
D061986 MCF-7 Cells An estrogen responsive cell line derived from a patient with metastatic human breast ADENOCARCINOMA (at the Michigan Cancer Foundation.) MCF7 Cells,Michigan Cancer Foundation 7 Cells,Cell, MCF-7,Cell, MCF7,Cells, MCF-7,Cells, MCF7,MCF 7 Cells,MCF-7 Cell,MCF7 Cell

Related Publications

Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
January 2020, American journal of translational research,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
January 2012, International journal of cancer,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
February 2019, Toxicology in vitro : an international journal published in association with BIBRA,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
October 2013, Journal of cancer research and clinical oncology,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
November 2013, Breast cancer research : BCR,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
June 2016, Molecular oncology,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
January 2017, Neoplasma,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
June 2017, Oncology letters,
Xiaoyu Gao, and Yudan Wu, and Lele Qiao, and Xiaoshan Feng
February 2024, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
Copied contents to your clipboard!