Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling. 2019

Karl Chastko, and Matthew Adams
Department of Geography, University of Toronto Mississauga, Ontario, Canada.

More commonly air pollution observations are obtained with unstructured monitoring, where either a research grade monitor or low-cost sensor is irregularly relocated throughout the study area. This unstructured data is commonly observed in community science programs. Often the objective is to apply these data to estimate a long-term concentration, which is achieved using a temporal adjustment to correct for the irregular sampling. Temporal adjustments leverage information from a stationary continuous reference monitor, in combination with short-term monitoring data, to estimate long-term pollutant concentrations. We assess the performance of temporal adjustment approaches to predict long-term pollutant concentrations using data representing unstructured sampling. A series of monitoring campaigns are simulated from air pollution data obtained from regulatory monitoring networks in four different cities (Paris, France; Taipei, Taiwan; Toronto, Canada; and Vancouver, Canada) for eight different pollutants (CO, NO, NOx, NO2, O3, PM10, PM2.5, and SO2). These simulated campaigns have randomized monitoring locations and sampling times to simulate the irregular nature of crowd sourced or mobile monitoring data. The number of consecutive samples reported, and selection of the reference monitor used to adjust observations, are varied in this study. The accuracy of estimates is assessed by comparing the estimated long-term concentration to the observed long-term concentration from the complete regulatory monitoring dataset. This study found that a common temporal adjustment applied in research performed significantly worse than other adjustments including a Naïve Temporal Approach where no data adjustment occurred. Increasing the sample size improved the accuracy of estimates, which showed decreasing benefit with increased sample lengths. Lastly, controlling for land use conditions of the reference monitor did not consistently improve the long-term estimates, which suggests that land use pairing of mobile and reference monitors does not significantly influence the predictive power of temporal adjustment approaches. Temporal adjustments can reduce the error in long-term concentration estimates of air pollution using incomplete data, but this benefit cannot be assumed across all approaches, pollutants or sampling programs.

UI MeSH Term Description Entries
D010297 Paris The capital city of France.
D002170 Canada The largest country in North America, comprising 10 provinces and three territories. Its capital is Ottawa.
D004784 Environmental Monitoring The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment. Monitoring, Environmental,Environmental Surveillance,Surveillance, Environmental
D005602 France A country in western Europe bordered by the Atlantic Ocean, the English Channel, the Mediterranean Sea, and the countries of Belgium, Germany, Italy, Spain, Switzerland, the principalities of Andorra and Monaco, and by the duchy of Luxembourg. Its capital is Paris. Corsica,Saint Pierre and Miquelon,Miquelon and Saint Pierre,Miquelon and St. Pierre,St. Pierre and Miquelon
D000393 Air Pollutants Any substance in the air which could, if present in high enough concentration, harm humans, animals, vegetation or materials. Substances include GASES; PARTICULATE MATTER; and volatile ORGANIC CHEMICALS. Air Pollutant,Air Pollutants, Environmental,Environmental Air Pollutants,Environmental Pollutants, Air,Air Environmental Pollutants,Pollutant, Air,Pollutants, Air,Pollutants, Air Environmental,Pollutants, Environmental Air
D000397 Air Pollution The presence of contaminants or pollutant substances in the air (AIR POLLUTANTS) that interfere with human health or welfare, or produce other harmful environmental effects. The substances may include GASES; PARTICULATE MATTER; or volatile ORGANIC CHEMICALS. Air Quality,Air Pollutions,Pollution, Air
D013624 Taiwan Country in eastern Asia, islands bordering the East China Sea, Philippine Sea, South China Sea, and Taiwan Strait, north of the Philippines, off the southeastern coast of China. The capital is Taipei. The alternate country name is Republic of China. Formosa,Republic of China
D052638 Particulate Matter Particles of any solid substance, generally under 30 microns in size, often noted as PM30. There is special concern with PM1 which can get down to PULMONARY ALVEOLI and induce MACROPHAGE ACTIVATION and PHAGOCYTOSIS leading to FOREIGN BODY REACTION and LUNG DISEASES. Ultrafine Fiber,Ultrafine Fibers,Ultrafine Particle,Ultrafine Particles,Ultrafine Particulate Matter,Air Pollutants, Particulate,Airborne Particulate Matter,Ambient Particulate Matter,Fiber, Ultrafine,Particle, Ultrafine,Particles, Ultrafine,Particulate Air Pollutants,Particulate Matter, Airborne,Particulate Matter, Ambient,Particulate Matter, Ultrafine

Related Publications

Karl Chastko, and Matthew Adams
January 1967, American Industrial Hygiene Association journal,
Karl Chastko, and Matthew Adams
January 1976, Scandinavian journal of work, environment & health,
Karl Chastko, and Matthew Adams
August 2011, Health physics,
Karl Chastko, and Matthew Adams
March 1982, Environmental monitoring and assessment,
Karl Chastko, and Matthew Adams
February 2017, Environmental health : a global access science source,
Karl Chastko, and Matthew Adams
September 1964, Journal of the Air Pollution Control Association,
Karl Chastko, and Matthew Adams
October 2009, Seminars in thrombosis and hemostasis,
Karl Chastko, and Matthew Adams
July 2019, European journal of preventive cardiology,
Karl Chastko, and Matthew Adams
September 2022, Environmental management,
Karl Chastko, and Matthew Adams
March 2002, BMJ (Clinical research ed.),
Copied contents to your clipboard!