Eukaryotic initiation factor 4D. Purification from human red blood cells and the sequence of amino acids around its single hypusine residue. 1986

M H Park, and T Y Liu, and S H Neece, and W J Swiggard

Eukaryotic initiation factor 4D (eIF-4D) was purified from human red blood cells by a simple 5-step procedure. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the preparations of eIF-4D were composed of variable amounts of two closely migrating forms of the factor, each of which contained a single residue of the unique amino acid hypusine. The structural similarity of the two forms of human eIF-4D was evidenced by the indistinguishable patterns of radioactivity on peptide maps of tryptic digests prepared from radioiodinated samples. A peptide containing the single hypusine residue was readily isolated from a tryptic digest of human eIF-4D by virtue of its high positive charge and hydrophilic character. Amino acid sequence determination on this peptide revealed the following primary structure around hypusine: Thr-Gly-hypusine-His-Gly-His-Ala-Lys.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097574 Eukaryotic Translation Initiation Factor 5A A component of eukaryotic initiation factor 5A that is involved in the elongation, termination, and stimulation of peptide bond formation. This factor is essential for cell proliferation Eukaryotic Initiation Factor-4D,eIF-4D,eIF-5A,eIF5A protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

M H Park, and T Y Liu, and S H Neece, and W J Swiggard
January 1989, The Journal of biological chemistry,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
December 1987, The Journal of biological chemistry,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
April 1984, The Journal of biological chemistry,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
August 1990, Biochimica et biophysica acta,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
February 1991, Biochimica et biophysica acta,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
January 1997, Biological signals,
M H Park, and T Y Liu, and S H Neece, and W J Swiggard
December 1973, The Biochemical journal,
Copied contents to your clipboard!