Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. 1986

D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis

The teeth of the sea urchin Lytechinus variegatus grow continuously. The mineral phase, a high magnesium calcite, grows into single crystals within numerous compartments bounded by an organic matrix deposited by the odontoblasts. Electron microscopic examination of glutaraldehyde-fixed Ethylene Diamine Tetra acetic acid (EDTA) demineralized teeth shows the compartment walls to be organized from multiple layers of cell membrane which might contain cytoplasmic protein inclusions. Proteins extracted during demineralization of unfixed teeth were examined by gel electrophoresis, high performance liquid chromatography, and amino acid analysis. The tooth proteins were acidic, they contained phosphoserine, and they were rich in aspartic acid. By contrast, the proteins of similarly extracted mineralized Aristotle's lantern skeletal elements were nonphosphorylated and were rich in glutamic acid. Vertebrate tooth and bone matrix proteins show similar differences. Surprisingly, an antibody to the principle rat incisor phosphoprotein showed a significant cross-reactivity with the urchin tooth protein, by dot-blot and enzyme-linked immunosorbent assay procedures. Thus, the urchin tooth proteins contain epitope regions similar to those which are phenotypic markers of vertebrate odontoblasts. Whether this is an expression of convergent or divergent evolutionary processes, it is likely that the matrix proteins play a similar role in matrix mineralization. The sea urchin tooth may thus be an excellent model for the study of odontoblast-mediated mineral-matrix relationships.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
December 2002, Microscopy research and technique,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
July 1978, Experientia,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
December 2009, Journal of structural biology,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
February 1958, Experimental cell research,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
May 1978, National Cancer Institute monograph,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
October 1966, Experimental cell research,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
October 2006, Development, growth & differentiation,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
October 2021, Development (Cambridge, England),
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
June 1979, Indian journal of biochemistry & biophysics,
D J Veis, and T M Albinger, and J Clohisy, and M Rahima, and B Sabsay, and A Veis
January 2003, Journal of structural biology,
Copied contents to your clipboard!