Transformation by extracellular DNA produced by Pseudomonas aeruginosa. 1986

Y Muto, and S Goto

Most Pseudomonas aeruginosa strains are capable of producing extracellular DNA. Very closely linked chromosomal markers (leu+ and trp+) were co-transferred to P. aeruginosa PAO1819 (leu9001, trp9008) by the extracellular DNA produced by P. aeruginosa strains IFO3445 and PAO1 at a frequency of 10(-7) to 10(-8). Treatment of the extracellular DNA with DNase, heating at 95 C or sonication completely destroyed its transforming ability. The R plasmid in the extracellular DNA produced by P. aeruginosa IFO3445 (RP4) or PAO2142 (RLb679) could be transferred to Escherichia coli ML4901 or P. aeruginosa PAO1819. The resultant transformants showed identical resistance patterns in the respective donors, and the sizes of the DNAs of RLb679 and RP4 isolated from the transformants were the same as those in the respective donors. These results demonstrate that the extracellular DNA contains both chromosomal DNA and plasmid DNA, and that it exhibits transforming ability. This implies that transformation by the extracellular DNA produced by P. aeruginosa may occur in nature and this seems to be of clinical importance in view of the spread of R plasmids among pathogens.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

Y Muto, and S Goto
September 1985, The Journal of infectious diseases,
Y Muto, and S Goto
August 1969, Journal of medical microbiology,
Y Muto, and S Goto
September 1966, Biochemistry,
Y Muto, and S Goto
December 1989, Nucleic acids research,
Y Muto, and S Goto
August 1990, Analytical biochemistry,
Y Muto, and S Goto
January 1977, Mikrobiologiia,
Y Muto, and S Goto
May 2013, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!