Evidence that two covalent intermediates, phosphoryl and malonyl enzymes, are formed during malonyl-coenzyme A synthetase catalysis. 1986

Y S Kim, and J K Lee

The isolation of malonyl-coenzyme A synthetase from Pseudomonas fluorescens grown on malonate has been reported recently (Kim, Y.S., and Bang, S.K. (1985) J. Biol.Chem. 260, 5098-5104). This enzyme is phosphorylated in the presence of ATP and Mg2+. The phosphoryl group appears on one subunit of the enzyme composed of two different subunits, and the phosphoryl enzyme is acid labile and base stable. The phosphoryl group on the enzyme is released by the incubation of the phosphoryl enzyme with malonate and malonyl enzyme is formed. The malonyl enzyme is acid labile and also relatively unstable under basic conditions. The malonyl group is found on the subunit of the enzyme which is phosphorylated. Malonyl-CoA is formed when malonyl enzyme reacts with coenzyme A. These results suggest that two convalent intermediates, phosphoryl and malonyl enzyme, are sequentially formed in the synthesis of malonyl-coenzyme A by malonyl-coenzyme A synthetase catalysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011551 Pseudomonas fluorescens A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin. Bacillus fluorescens,Bacillus fluorescens liquefaciens,Bacterium fluorescens,Liquidomonas fluorescens
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Y S Kim, and J K Lee
April 1985, The Journal of biological chemistry,
Y S Kim, and J K Lee
July 2009, Chembiochem : a European journal of chemical biology,
Y S Kim, and J K Lee
November 2015, ACS chemical biology,
Y S Kim, and J K Lee
June 2000, Archives of biochemistry and biophysics,
Copied contents to your clipboard!