Oxidative inactivation of the enzyme rhodanese by reduced nicotinamide adenine dinucleotide. 1986

P M Horowitz, and K Falksen

The enzyme rhodanese (thiosulfate sulfurtransferase; EC 2.8.1.1) is inactivated with a half-time of approximately 3 min when incubated with 50 mM NADH. NAD+, however, has virtually no effect on the activity. Inactivation can be prevented by the inclusion of the substrate thiosulfate. The concentration of thiosulfate giving half-protection is 0.038 mM. In addition, NADH, but not NAD+, is a competitive inhibitor with respect to thiosulfate in the catalyzed reaction (Ki = 8.3 mM). Fluorescence studies are consistent with a time-dependent oxidation of NADH in the presence of rhodanese. The sulfur-free form of rhodanese is more rapidly inactivated than the sulfur-containing form. Spectrophotometric titrations show that inactivation is accompanied by the loss of two free SH groups per enzyme molecule. Inactivation is prevented by the exclusion of air and the inclusion of EDTA (1 mM), and the enzyme activity can be largely protected by incubation with superoxide dismutase or catalase. Rhodanese, inactivated with NADH, can be reactivated by incubation with the substrate thiosulfate (75 mM) for 48 h or more rapidly, but only partially, by incubating with 180 mM dithiothreitol. It is concluded that, in the presence of rhodanese, NADH can be oxidized by molecular oxygen and produce intermediates of oxygen reduction, such as superoxide and/or hydrogen peroxide, that can inactivate the enzyme with consequent formation of an intraprotein disulfide. In addition, NADH, but not NAD+, can reversibly bind to the active site region in competition with thiosulfate. These data are of interest in view of x-ray studies that show structural similarities between rhodanese and nucleotide binding proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D013466 Sulfurtransferases Enzymes which transfer sulfur atoms to various acceptor molecules. EC 2.8.1. Sulfurtransferase
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D013884 Thiosulfate Sulfurtransferase An enzyme that catalyzes the transfer of the planetary sulfur atom of thiosulfate ion to cyanide ion to form thiocyanate ion. EC 2.8.1.1. Rhodanese,Thiosulfate Cyanide Transsulphurase,Thiosulfate Sulphurtransferase,Cyanide Transsulphurase, Thiosulfate,Sulfurtransferase, Thiosulfate,Sulphurtransferase, Thiosulfate,Transsulphurase, Thiosulfate Cyanide

Related Publications

P M Horowitz, and K Falksen
December 1962, The Biochemical journal,
P M Horowitz, and K Falksen
December 1967, Life sciences,
P M Horowitz, and K Falksen
November 1978, The Biochemical journal,
Copied contents to your clipboard!