Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. 2019

Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
Department of Biology, Indiana University, Bloomington.

The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010247 Paramecium A genus of ciliate protozoa that is often large enough to be seen by the naked eye. Paramecia are commonly used in genetic, cytological, and other research. Parameciums
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D054629 Genome, Mitochondrial The genetic complement of MITOCHONDRIA as represented in their DNA. Mitochondrial Genome,Genomes, Mitochondrial,Mitochondrial Genomes
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D020641 Polymorphism, Single Nucleotide A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population. SNPs,Single Nucleotide Polymorphism,Nucleotide Polymorphism, Single,Nucleotide Polymorphisms, Single,Polymorphisms, Single Nucleotide,Single Nucleotide Polymorphisms

Related Publications

Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
September 1983, Current genetics,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
December 2001, Current opinion in genetics & development,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
February 1972, Nature,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
June 1980, Theoretical population biology,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
September 1974, Genetics,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
December 1979, Genetics,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
January 2005, Gene,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
February 2007, Parasitology,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
July 2006, Journal of molecular biology,
Parul Johri, and Georgi K Marinov, and Thomas G Doak, and Michael Lynch
January 2013, Marine biology,
Copied contents to your clipboard!