Action of Norepinephrine on Lamina X of the Spinal Cord. 2019

Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan. Electronic address: ww81854@sa2.so-net.ne.jp.

Lamina X is localized in the spinal cord within the region surrounding the central canal and receives descending projections from the supraspinal nuclei. Norepinephrine (NE) is a neurotransmitter in descending pathways emanating from the brain stem; NE-containing fibers terminate in the spinal dorsal cord, particularly in the substantia gelatinosa (SG). NE enhances inhibitory synaptic transmission in SG neurons by activating presynaptic α1-receptors and hyperpolarizes the membranes of SG neurons by acting on α2-receptors; NE may thus act directly on SG neurons of the dorsal spinal cord and inhibit nociceptive transmission at the spinal level. NE-containing fibers also reportedly terminate in lamina X, suggesting that NE also modulates synaptic transmission in lamina X. However, the cellular mechanisms underlying such action have not been investigated. We hypothesized that NE might directly act on lamina X and enhance inhibitory synaptic transmission therein. Using rat spinal cord slices and in vitro whole-cell patch-clamps, we found that the bath-application of NE to lamina X does not affect the excitatory interneurons but enhances GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) and induces an outward current. NE-induced enhancement of mIPSCs was blocked by α1A-receptor antagonists, and NE-induced outward current was blocked by α2-receptor antagonists. NE did not affect GABA- or glycine- induced outward currents. These findings are similar to those obtained from SG neurons: NE may act at presynaptic terminals of GABAergic and glycinergic interneurons on lamina X to facilitate inhibitory-transmitter release through α1A-receptor activation and directly induce inhibitory interneuron membrane hyperpolarization through α2-receptors activation.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013376 Substantia Gelatinosa Gelatinous-appearing material in the dorsal horn of the spinal cord, consisting chiefly of Golgi type II neurons and some larger nerve cells. Lamina 2,Lamina II,Substantia Gelatinosa of Rolando,Gelatinosa, Substantia,Gelatinosas, Substantia,Rolando Substantia Gelatinosa,Substantia Gelatinosas
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D053444 Inhibitory Postsynaptic Potentials Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals. IPSP,Inhibitory Postsynaptic Currents,Current, Inhibitory Postsynaptic,Currents, Inhibitory Postsynaptic,IPSPs,Inhibitory Postsynaptic Current,Inhibitory Postsynaptic Potential,Postsynaptic Current, Inhibitory,Postsynaptic Currents, Inhibitory,Postsynaptic Potential, Inhibitory,Postsynaptic Potentials, Inhibitory,Potential, Inhibitory Postsynaptic,Potentials, Inhibitory Postsynaptic
D055369 Miniature Postsynaptic Potentials Postsynaptic potentials generated from a release of neurotransmitters from a presynaptic nerve terminal in the absence of an ACTION POTENTIAL. They may be m.e.p.p.s (miniature EXCITATORY POSTSYNAPTIC POTENTIALS) or m.i.p.p.s (miniature INHIBITORY POSTSYNAPTIC POTENTIALS). MEPPS,Miniature End Plate Potential,Miniature End Plate Potentials,Spontaneous End Plate Potentials,Spontaneous Postsynaptic Potentials,MEPPSs,Miniature Postsynaptic Potential,Postsynaptic Potential, Miniature,Postsynaptic Potential, Spontaneous,Postsynaptic Potentials, Miniature,Postsynaptic Potentials, Spontaneous,Potential, Miniature Postsynaptic,Potential, Spontaneous Postsynaptic,Potentials, Miniature Postsynaptic,Potentials, Spontaneous Postsynaptic,Spontaneous Postsynaptic Potential

Related Publications

Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
September 1987, Neuroscience,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
May 1988, Neuroscience,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
January 2017, Frontiers in cellular neuroscience,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
July 2007, Neuroreport,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
June 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
November 2002, Neuropharmacology,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
October 1938, The Journal of physiology,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
November 1971, Archives internationales de pharmacodynamie et de therapie,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
September 2016, Brain research,
Nobuko Ohashi, and Masayuki Ohashi, and Hiroshi Baba
July 2000, Journal of neuroscience methods,
Copied contents to your clipboard!