Multisite phosphorylation of the alpha subunit of transducin by the insulin receptor kinase and protein kinase C. 1986

Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel

The GDP-bound alpha subunit of transducin, but not the guanosine 5'-[gamma-thio]triphosphate-bound one, undergoes phosphorylation on tyrosine residues by the insulin receptor kinase and on serine residues by protein kinase C. Holotransducin is poorly phosphorylated by the insulin receptor kinase and is not phosphorylated by protein kinase C. Neither holotransducin nor any of its subunits were phosphorylated by the cAMP-dependent protein kinase. That a given subunit of transducin undergoes multisite phosphorylation depending on the type of nucleotide bound to it or the nature of the kinase suggests that hormone-dependent phosphorylation could provide a versatile mode for regulation of guanine nucleotide-binding protein (G protein) function. In particular, the findings that certain G proteins serve as substrates for both the insulin receptor kinase and protein kinase C implicate G proteins in playing a key role in mediating the action of insulin and ligands that act to activate protein kinase C.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
January 1985, Biochimie,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
November 2016, Oncotarget,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
September 1984, Cellular and molecular neurobiology,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
October 1988, Journal of neurochemistry,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
June 1995, The Journal of biological chemistry,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
May 1994, Biochemical and biophysical research communications,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
October 1994, Molecular and cellular endocrinology,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
January 1991, The Journal of biological chemistry,
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
January 1994, Molecular endocrinology (Baltimore, Md.),
Y Zick, and R Sagi-Eisenberg, and M Pines, and P Gierschik, and A M Spiegel
August 1987, The Journal of biological chemistry,
Copied contents to your clipboard!