Mutational analysis of the immunoglobulin heavy chain promoter region. 1986

D W Ballard, and A Bothwell

Complete immunoglobulin heavy chain (IgH) genes (gamma and mu) containing the intronic IgH enhancer and mutations in the upstream promoter region were constructed in vitro and introduced into murine J558L myeloma cells by protoplast fusion. S1-nuclease mapping experiments demonstrated that IgH gene expression was extremely sensitive to mutation in an upstream region containing the octanucleotide sequence ATGCAAAT. Significant IgH mRNA levels were detected in RNA from cells transfected with IgH gene constructs in which all upstream sequences on the 5' proximal side of this element were deleted. Similar results were obtained using the precise inverse of the IgH octamer, which is found in the upstream promoter region of immunoglobulin light chain genes. Deletion of the IgH octamer, or point mutation of adenine to guanine at position 6, resulted in the loss of correctly initiated IgH mRNA. A DNA binding factor from J558L nuclear extracts was identified that appeared to recognize the octamer on the basis of differential binding to homologous restriction fragments containing the various mutations and that bound preferentially with octamer DNA fragments derived from functional relative to nonfunctional IgH constructs. Collectively, these data suggest that the octamer element contains residues that are critical to accurate immunoglobulin gene transcription and that may serve as part of a recognition locus for nuclear factors important to B-cell-specific immunoglobulin expression.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007142 Immunoglobulin gamma-Chains Heavy chains of IMMUNOGLOBULIN G having a molecular weight of approximately 51 kDa. They contain about 450 amino acid residues arranged in four domains and an oligosaccharide component covalently bound to the Fc fragment constant region. The gamma heavy chain subclasses (for example, gamma 1, gamma 2a, and gamma 2b) of the IMMUNOGLOBULIN G isotype subclasses (IgG1, IgG2A, and IgG2B) resemble each other more closely than the heavy chains of the other IMMUNOGLOBULIN ISOTYPES. Immunoglobulins, gamma-Chain,Immunoglobulin gamma-Chain,gamma Immunoglobulin Heavy Chain,gamma Immunoglobulin Heavy Chains,gamma-1-Immunoglobulin Heavy Chain,gamma-2a-Immunoglobulin Heavy Chain,gamma-2b-Immunoglobulin Heavy Chain,gamma-Chain Immunoglobulins,Heavy Chain, gamma-1-Immunoglobulin,Heavy Chain, gamma-2a-Immunoglobulin,Heavy Chain, gamma-2b-Immunoglobulin,Immunoglobulin gamma Chain,Immunoglobulin gamma Chains,Immunoglobulins, gamma Chain,gamma 1 Immunoglobulin Heavy Chain,gamma 2a Immunoglobulin Heavy Chain,gamma 2b Immunoglobulin Heavy Chain,gamma Chain Immunoglobulins,gamma-Chain, Immunoglobulin,gamma-Chains, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007148 Immunoglobulin mu-Chains The class of heavy chains found in IMMUNOGLOBULIN M. They have a molecular weight of approximately 72 kDa and they contain about 57 amino acid residues arranged in five domains and have more oligosaccharide branches and a higher carbohydrate content than the heavy chains of IMMUNOGLOBULIN G. Ig mu Chains,Immunoglobulins, mu-Chain,Immunoglobulin mu-Chain,mu Immunoglobulin Heavy Chain,mu Immunoglobulin Heavy Chains,mu-Chain Immunoglobulins,Chains, Ig mu,Immunoglobulin mu Chain,Immunoglobulin mu Chains,Immunoglobulins, mu Chain,mu Chain Immunoglobulins,mu Chains, Ig,mu-Chain, Immunoglobulin,mu-Chains, Immunoglobulin
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D W Ballard, and A Bothwell
June 1987, Proceedings of the National Academy of Sciences of the United States of America,
D W Ballard, and A Bothwell
November 2018, Immunobiology,
D W Ballard, and A Bothwell
July 1982, Cell,
D W Ballard, and A Bothwell
March 1998, The American journal of physiology,
D W Ballard, and A Bothwell
November 2022, Zhonghua bing li xue za zhi = Chinese journal of pathology,
D W Ballard, and A Bothwell
May 1980, Journal of immunology (Baltimore, Md. : 1950),
D W Ballard, and A Bothwell
November 1985, American journal of human genetics,
D W Ballard, and A Bothwell
November 1985, American journal of human genetics,
D W Ballard, and A Bothwell
December 2002, Immunological reviews,
Copied contents to your clipboard!