Enteric nervous system in the European beaver (Castor fiber) pylorus - an immunohistochemical study. 2019

M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland.

European beaver (Castor fiber), the largest rodent species inhabiting a wide area of Eurasia, feeds mainly on dry parts of plants, bark or wood. Such kind of nourishment needs to be properly digested in each part of the gastrointestinal tract. The time of stomach digestion, which directly influences all the following steps of the digestion process, is precisely controlled by the pylorus and its innervation. However, virtually no data is available on the organization of the enteric nervous system in most of the wild animal species, including beavers. On the other hand, a pecu- liar diet consumed by beavers, suggests that the arrangement of their stomach intramural nerve elements can be atypical. Therefore, the present study investigated the distribution and chemical coding of neurons and nerve fibers in the pylorus of the European beaver. The experiment was performed on stomachs obtained from a group of 6 beavers caught in Northeastern region of Poland (due to beaver overpopulation). Pyloric wall tissue cryosections were double immunostained with a mixture of antibodies against pan-neuronal marker PGP 9.5 (to visualize enteric neurons) and ChAT (cholinergic marker), nNOS (nitrergic marker), SP, CGRP, Gal (peptidergic markers). Confocal microscopy analysis revealed that the majority of enteric nerve cells were clustered forming submucosal and myenteric ganglia and all the studied substances were expressed (in various amounts) in these neurons. We conclude, that the anatomical arrangement and chemical coding of intramural nerve elements in the beaver pylorus resemble those found in other mammalian species.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011708 Pylorus The region of the STOMACH at the junction with the DUODENUM. It is marked by the thickening of circular muscle layers forming the pyloric sphincter to control the opening and closure of the lumen. Pyloric Sphincter,Pyloric Sphincters,Sphincter, Pyloric,Sphincters, Pyloric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012377 Rodentia A mammalian order which consists of 29 families and many genera. Beavers,Capybaras,Castor Beaver,Dipodidae,Hydrochaeris,Jerboas,Rodents,Beaver,Capybara,Hydrochaeri,Jerboa,Rodent,Rodentias
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D043222 Ubiquitin Thiolesterase A thioester hydrolase which acts on esters formed between thiols such as DITHIOTHREITOL or GLUTATHIONE and the C-terminal glycine residue of UBIQUITIN. Neuron Cytoplasmic Protein 9.5,PARK5 Protein,Parkinson Disease 5 Protein,UCHL1 Protein,Ubiquitin C-Terminal Esterase,Ubiquitin C-Terminal Hydrolase,Ubiquitin Carboxy-Terminal Esterase,Ubiquitin Carboxy-Terminal Hydrolase,Ubiquitin Carboxyl-Terminal Hydrolase Isozyme L1,Uch-L1 Protein,C-Terminal Esterase, Ubiquitin,C-Terminal Hydrolase, Ubiquitin,Carboxy-Terminal Esterase, Ubiquitin,Carboxy-Terminal Hydrolase, Ubiquitin,Esterase, Ubiquitin C-Terminal,Esterase, Ubiquitin Carboxy-Terminal,Hydrolase, Ubiquitin C-Terminal,Hydrolase, Ubiquitin Carboxy-Terminal,Thiolesterase, Ubiquitin,Ubiquitin C Terminal Esterase,Ubiquitin C Terminal Hydrolase,Ubiquitin Carboxy Terminal Esterase,Ubiquitin Carboxy Terminal Hydrolase,Ubiquitin Carboxyl Terminal Hydrolase Isozyme L1,Uch L1 Protein
D052248 Nitric Oxide Synthase Type I A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in NERVE TISSUE. NCNOS Enzyme,NOS1 Protein,Neural Constitutive Nitric Oxide Synthase,Neuronal Nitric Oxide Synthase,Nitric Oxide Synthase, Type I,nNOS Enzyme

Related Publications

M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
June 2010, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
January 1980, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
January 1991, Wiadomosci parazytologiczne,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
September 2011, The Veterinary record,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
August 2015, Parasitology research,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
January 2017, Meat science,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
November 1974, Journal of mammalogy,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
October 2016, Tissue & cell,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
March 2009, Molecular ecology resources,
M Zalecki, and K Makowska, and Z Gizejewski, and M Klimczuk, and A Franke-Radowiecka, and N Kasica-Jarosz, and W Sienkiewicz
December 1976, Acta zoologica et pathologica Antverpiensia,
Copied contents to your clipboard!