In vitro translation of mushroom tyrosinase. 1986

G K Podila, and W H Flurkey

Mushroom tyrosinase was purified and antibodies prepared against the holo enzyme and a protein of 26,000 daltons. Both antibodies recognized the large subunit of the enzyme but only one recognized the 26,000 dalton protein. Poly A+ mRNA was isolated from mushrooms, translated in vitro, and a 41,000 dalton protein immunoprecipitated from the translation mix with either antibody. This 41,000 dalton protein presumably corresponds to the large subunit of the holoenzyme. Antibodies against the holoenzyme also immunoprecipitated another translation product with a molecular weight of 15,000 daltons corresponding to the small subunit of the holoenzyme. These results suggest that each subunit may be coded for by different genes and undergo posttranslational processing.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D001487 Basidiomycota A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi. Basidiomycetes,Basidiomycete,Basidiomycotas
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014442 Monophenol Monooxygenase An enzyme of the oxidoreductase class that catalyzes the reaction between L-tyrosine, L-dopa, and oxygen to yield L-dopa, dopaquinone, and water. It is a copper protein that acts also on catechols, catalyzing some of the same reactions as CATECHOL OXIDASE. EC 1.14.18.1. Dopa Oxidase,Phenoloxidase,Tyrosinase,Cresolase,Phenol Oxidase,Phenoloxidase A,Phenoloxidase B,Monooxygenase, Monophenol,Oxidase, Dopa,Oxidase, Phenol

Related Publications

G K Podila, and W H Flurkey
May 2009, The protein journal,
G K Podila, and W H Flurkey
January 2001, Biochimica et biophysica acta,
G K Podila, and W H Flurkey
January 2020, Biological & pharmaceutical bulletin,
G K Podila, and W H Flurkey
July 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G K Podila, and W H Flurkey
May 2003, Journal of agricultural and food chemistry,
G K Podila, and W H Flurkey
April 1998, The Biochemical journal,
G K Podila, and W H Flurkey
December 1974, Biochemical and biophysical research communications,
G K Podila, and W H Flurkey
February 1948, Archives of biochemistry,
G K Podila, and W H Flurkey
May 1976, Biochemical and biophysical research communications,
G K Podila, and W H Flurkey
September 2005, Journal of agricultural and food chemistry,
Copied contents to your clipboard!