Characterization and immunochemistry of pyruvate dehydrogenase complex of Ascaris muscle. 1986

S Matuda, and K Nakano, and T Saheki

Pyruvate dehydrogenase complex and lipoamide dehydrogenase were purified from muscle of Ascaris lumbricoides var. suum which contains relatively a large amount of the complex. Molecular weights of three constituent enzymes of Ascaris pyruvate dehydrogenase complex were as follows; alpha- and beta-subunits of pyruvate dehydrogenase were 42,000 and 37,000, respectively, lipoate acetyltransferase was 76,000 and lipoamide dehydrogenase was 56,000. Furthermore, two unknown polypeptides having molecular weight of 46,000 and 41,000 were detected. Anti-Ascaris lipoamide dehydrogenase antibody precipitated three constituent enzymes and two unknown polypeptides, suggesting that lipoamide dehydrogenase not only binds tightly to complex, but also two unknown polypeptides bind tightly to complex.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D001200 Ascaris A genus of nematodes of the superfamily ASCARIDOIDEA whose species usually inhabit the intestine. Ascari
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Matuda, and K Nakano, and T Saheki
November 1979, Biochimica et biophysica acta,
S Matuda, and K Nakano, and T Saheki
April 1987, Molecular and biochemical parasitology,
S Matuda, and K Nakano, and T Saheki
June 1983, Molecular and biochemical parasitology,
S Matuda, and K Nakano, and T Saheki
January 1970, Biokhimiia (Moscow, Russia),
S Matuda, and K Nakano, and T Saheki
January 1982, Methods in enzymology,
S Matuda, and K Nakano, and T Saheki
July 1979, Journal of biochemistry,
S Matuda, and K Nakano, and T Saheki
May 1988, Molecular and biochemical parasitology,
Copied contents to your clipboard!