Synthesis of novel gefitinib-based derivatives and their anticancer activity. 2019

Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India.

Drug latentiation is a process of modifying a drug molecule structurally to improve its binding affinity as well as increasing the drug-receptor interactions and potentiate its therapeutic potential. In the quest for discovering more potent epidermal growth factor receptor (EGFR) inhibitors, gefitinib-based derivatives were designed by simple structural modification at the secondary amine of gefitinib by N-alkylation. Three gefitinib derivatives (gefitinib-NB, -NP, and -NIP) were synthesized by N-alkylation and phase transfer catalysis. Structural characterization, physicochemical parameters such as solubility, log P, and p K a were determined. Molecular docking studies were carried out to investigate the binding interactions at the active site. Further drug-bovine serum albumin (BSA) protein and drug-calf thymus (CT) DNA interactions were performed to understand the pharmacokinetics of the synthesized derivatives. All the compounds were screened for preliminary in vitro cytotoxic activity against A549, A431 lung, and MDA-MB-231 breast cancer cell lines by MTT assay. The gefitinib-NP and gefitinib-NB derivatives exhibited strong cytotoxic activity compared with gefitinib. They also showed higher drug-BSA and drug-DNA interactions. Molecular docking studies showed the orientation and binding interactions with the EGFR as well as with BSA and CT DNA. The results establish a strong correlation between the experimental and molecular docking studies. EGFR inhibition studies were also carried out for the derivatives and we identified the NP derivative of gefitinib as a potential lead compound. The gefitinib-based derivatives reported herein are cytotoxic agents and can be tested for further pharmacokinetic profiles and toxicity studies which might be helpful for designing more potent gefitinib-based derivatives in the future.

UI MeSH Term Description Entries
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077156 Gefitinib A selective tyrosine kinase inhibitor for the EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) that is used for the treatment of locally advanced or metastatic NON-SMALL CELL LUNG CANCER. Iressa,N-(3-Chloro-4-fluorophenyl)-7-methoxy-6-(3-(4-morpholinyl)propoxy)-4-quinazolinamide,ZD 1839,ZD1839
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
June 2017, Bioorganic & medicinal chemistry letters,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
January 2012, Natural product research,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
September 2019, European journal of medicinal chemistry,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
February 2012, European journal of medicinal chemistry,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
June 2015, European journal of medicinal chemistry,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
July 2017, Bioorganic & medicinal chemistry,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
January 2019, Frontiers in oncology,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
August 2011, European journal of medicinal chemistry,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
January 2015, Chemical & pharmaceutical bulletin,
Mrunal J Sharma, and Maushmi S Kumar, and Manikanta Murahari, and Y C Mayur
November 2013, European journal of medicinal chemistry,
Copied contents to your clipboard!