LncRNA LEF1-AS1 regulates the migration and proliferation of vascular smooth muscle cells by targeting miR-544a/PTEN axis. 2019

Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.

Long noncoding RNAs (lncRNAs) play important roles in endothelium development. A lncRNA, LEF1-AS1, is recently emerging as a potent mediator of the proliferation and migration of a number of cells, including smooth muscle cells. However, the effects of LEF1-AS1 in atherosclerosis remains largely unknown. Specimens from patients with coronary artery atherosclerosis were collected. The quantitative real-time polymerase chain reaction was used to analyze levels of LEF1-AS1 and microRNA-544a (miR-544a). Western blot analysis was used to assess PTEN, P-Akt, and T-Akt protein expression. Proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 assay, scratch wound assay, and transwell assay, respectively. The interaction between LEF1-AS1, miR-544a, and PTEN was probed using bioinformatical analysis and dual-luciferase assay. In plasma and tissue of patients with coronary artery atherosclerosis, LEF1-AS1 was upregulated and miR-544a was downregulated. A negative correlation was found between LEF1-AS1 and miR-544a. miR-544a overexpression reversed the inhibition of LEF1-AS1 in smooth muscle cell proliferation and invasion, which were mediated through the PTEN pathway. LEF1-AS1 regulates smooth muscle cell proliferation and migration through the miR-544a/PTEN axis, indicating that LEF1-AS1 may be a potential therapeutic target in atherosclerosis.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003324 Coronary Artery Disease Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause. Arteriosclerosis, Coronary,Atherosclerosis, Coronary,Coronary Arteriosclerosis,Coronary Atherosclerosis,Left Main Coronary Artery Disease,Left Main Coronary Disease,Left Main Disease,Arterioscleroses, Coronary,Artery Disease, Coronary,Artery Diseases, Coronary,Atheroscleroses, Coronary,Coronary Arterioscleroses,Coronary Artery Diseases,Coronary Atheroscleroses,Left Main Diseases
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016022 Case-Control Studies Comparisons that start with the identification of persons with the disease or outcome of interest and a control (comparison, referent) group without the disease or outcome of interest. The relationship of an attribute is examined by comparing both groups with regard to the frequency or levels of outcome over time. Case-Base Studies,Case-Comparison Studies,Case-Referent Studies,Matched Case-Control Studies,Nested Case-Control Studies,Case Control Studies,Case-Compeer Studies,Case-Referrent Studies,Case Base Studies,Case Comparison Studies,Case Control Study,Case Referent Studies,Case Referrent Studies,Case-Comparison Study,Case-Control Studies, Matched,Case-Control Studies, Nested,Case-Control Study,Case-Control Study, Matched,Case-Control Study, Nested,Case-Referent Study,Case-Referrent Study,Matched Case Control Studies,Matched Case-Control Study,Nested Case Control Studies,Nested Case-Control Study,Studies, Case Control,Studies, Case-Base,Studies, Case-Comparison,Studies, Case-Compeer,Studies, Case-Control,Studies, Case-Referent,Studies, Case-Referrent,Studies, Matched Case-Control,Studies, Nested Case-Control,Study, Case Control,Study, Case-Comparison,Study, Case-Control,Study, Case-Referent,Study, Case-Referrent,Study, Matched Case-Control,Study, Nested Case-Control
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
September 2019, RSC advances,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
February 2019, Biochemical and biophysical research communications,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
September 2019, Journal of cellular physiology,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
December 2019, Investigational new drugs,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
June 2021, Advances in clinical and experimental medicine : official organ Wroclaw Medical University,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
July 2021, Zhonghua zhong liu za zhi [Chinese journal of oncology],
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
October 2022, RSC advances,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
March 2020, European review for medical and pharmacological sciences,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
October 2019, European review for medical and pharmacological sciences,
Lina Zhang, and Changyong Zhou, and Qiaoji Qin, and Zhenfang Liu, and Peng Li
January 2022, PloS one,
Copied contents to your clipboard!