Circular dichroism of chemically modified human plasma alpha1-antitrypsin. Interaction with porcine elastase. 1978

J C Fretz, and J C Gan

Chemical modifications of human plasma alpha1-antitrypsin with reagents which modify lysyl residues (citraconic anhydride, acetic anhydride, formaldehyde and 2,4,6-trinitrobenzenesulfonic acid) and arginyl residued (1,2-cyclohexanedione) were examined with regard to their effect upon the elastase inhibitory capacity of the glycoprotein. 2,4,6-Trinitrobenzenesulfonic acid was employed to quantitate the remaining free amino groups (epsilon-NH2 groups of lysine) and the extent of modifications. Amino acid analysis was utilized in the same capacity for the guanidino groups of arginyl residues. The elastase inhibitory capacity of alpha1-antitrypsin was destroyed following trinitrophenylation, citraconylation and acetylation. Circular dichroism of the native and modified derivatives revealed major changes in conformation following trinitrophenylation and citraconylation while CD profiles of acetylated and reductively methylated derivatives differed from that of the native profile considerably less. Reductively methylated alpha1-antitrypsin retained its elastatse inhibitory capacity. The reaction of 1,2-cyclohexanedione with alpha1-antitrypsin did not effect in a loss in inhibitory capacity. Gel filtration studies of native and modified alpha1-antitrypsin on Sephadex G-100 demonstrated an increased molecular weight presumably through molecular aggregation, in the citraconylated and trinitrophenylated derivatives, but not in the cases of the other derivatives. Based upon these studies and previous investigations of our laboratory, it was concluded that (1) alpha1-antitrypsin is a lysyl inhibitor type (i.e., the reactive site is a Lys-X bond), (2) its interaction with elastase follows a pattern similar to trypsin and chymotrypsin, and (3) the positively charged epsilon-NH2 group of lysine is essential for the maintenance of elastase inhibitory capacity.

UI MeSH Term Description Entries
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014301 Trinitrobenzenes Benzene derivatives which are substituted with three nitro groups in any position. Trinitrophenyl Compounds,Compounds, Trinitrophenyl

Related Publications

J C Fretz, and J C Gan
August 1977, Biochimica et biophysica acta,
J C Fretz, and J C Gan
June 1977, Biochimica et biophysica acta,
J C Fretz, and J C Gan
June 1975, Annals of the New York Academy of Sciences,
J C Fretz, and J C Gan
May 1978, Journal of biochemistry,
J C Fretz, and J C Gan
July 1974, Biochimica et biophysica acta,
J C Fretz, and J C Gan
February 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!