Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). 1987

K A Cunningham, and J B Appel

The neuropharmacological mechanisms underlying the behavioral effects of d-lysergic acid diethylamide (LSD) were assessed by comparing the discriminative stimulus properties of LSD with those of agonists and antagonists that act selectively at putative serotonin (5-hydroxytryptamine; 5-HT) receptor subtypes (5-HT1 and 5-HT2). Male Sprague-Dawley rats (N = 23) were trained to discriminate LSD (0.08 mg/kg) from saline and given substitution tests with the following agents: 8-hydroxy-2(di-n-propyl-amino) tetralin (8-OHDPAT; 0.02-0.64 mg/kg), Ru 24969 (0.2-3.2 mg/kg), m-chlorophenylpiperazine (MCPP; 0.1-1.6 mg/kg), 1-(m-trifluoromethylphenyl)piperazine (TFMPP; 0.1-1.6 mg/kg), and quipazine (0.2-3.2 mg/kg). Only quipazine mimicked LSD. In combination tests, BC 105 (0.2-3.2 mg/kg), 2-bromolysergic acid diethylamide (BOL; 0.1-1.6 mg/kg), Ly 53857 (0.4-3.2 mg/kg), metergoline (0.05-0.8 mg/kg), ketanserin (0.2-3.2 mg/kg), and pipenperone (0.0025-0.08 mg/kg), all of which act as 5-HT2 antagonists, blocked the LSD cue; only spiperone (0.02-0.32 mg/kg) was without effect. Although commonalities may exist among "5-HT agonists", the present results demonstrate that such "agonists" are not identical. Since putative 5-HT1 agonists do not mimic LSD and the LSD cue is potently blocked by 5-HT2 antagonists, it appears that 5-HT2 neuronal systems are of greater importance than 5-HT1 systems in mediating the discriminative stimulus and, perhaps, other effects of LSD.

UI MeSH Term Description Entries
D008238 Lysergic Acid Diethylamide Semisynthetic derivative of ergot (Claviceps purpurea). It has complex effects on serotonergic systems including antagonism at some peripheral serotonin receptors, both agonist and antagonist actions at central nervous system serotonin receptors, and possibly effects on serotonin turnover. It is a potent hallucinogen, but the mechanisms of that effect are not well understood. LSD,Lysergide,LSD-25,Lysergic Acid Diethylamide Tartrate,Acid Diethylamide, Lysergic,Diethylamide, Lysergic Acid,LSD 25
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin

Related Publications

K A Cunningham, and J B Appel
July 1985, The Journal of pharmacology and experimental therapeutics,
K A Cunningham, and J B Appel
January 1971, Psychopharmacologia,
K A Cunningham, and J B Appel
January 1960, Lekarska veda v zahranici,
K A Cunningham, and J B Appel
October 1964, Psychopharmacologia,
K A Cunningham, and J B Appel
February 1969, Acta obstetrica y ginecologica hispano-lusitana,
K A Cunningham, and J B Appel
January 1958, The New England journal of medicine,
Copied contents to your clipboard!