Mutations in N-ras predominate in acute myeloid leukemia. 1987

J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly

Using synthetic oligomers we investigated fresh samples of acute myeloid leukemia (AML) for the presence of mutated ras oncogenes. Our original results showed that five of eight samples contained a mutation in codon 13 of the N-ras gene. In a subsequent study involving 37 samples, we found only one N-ras-13 mutation, and, in addition, mutations in codon 61 of the N-ras gene in four cases and a mutation in codon 12 of the Ki-ras gene in two cases. Amplification of ras genes was not observed. We conclude that in approximately 20% to 25% of AML cases, a mutated ras oncogene is present, predominantly the N-ras gene. The occurrence of mutations does not correlate with the cytological features of the leukemia.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
April 1998, Chinese medical journal,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
May 1999, Blood,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
January 2009, The Egyptian journal of immunology,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
November 2004, Haematologica,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
February 1992, Oncogene,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
March 1992, International journal of cancer,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
January 1994, Acta haematologica,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
November 1991, American journal of hematology,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
August 1989, Tumori,
J L Bos, and M Verlaan-de Vries, and A J van der Eb, and J W Janssen, and R Delwel, and B Löwenberg, and L P Colly
July 2006, Leukemia & lymphoma,
Copied contents to your clipboard!