Cloning and developmental expression of the murine neurofilament gene family. 1986

J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld

DNA clones encoding the 3 mouse neurofilament (NF) genes have been isolated by cross-hybridization with a previously described NF-L cDNA probe from the rat. Screening of a lambda gt10 cDNA library prepared from mouse brain RNA led to the cloning of an NF-L cDNA of 2.0 kb that spans the entire coding region of 541 amino acids and of an NF-M cDNA that covers 219 amino acids from the internal alpha-helical region and the carboxy-terminal domains of the protein. These cDNA clones were used as probes to screen mouse genomic libraries, and cosmid clones containing both NF-L and NF-M sequences were isolated as well as overlapping cosmids containing the NF-H gene. This strongly suggests that the 3 neurofilament genes are organised in a cluster and derived by gene duplication of a common ancestral gene. RNA blot analyses using specific DNA probes for each of the genes indicate that NF mRNAs are differentially expressed during brain development. The NF-L and NF-M mRNAs are detected early in the embryonal brain, with a progressive increase in their levels during development, while the NF-H mRNA is barely detectable at embryonal stages and accumulates later in the postnatal brain.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament

Related Publications

J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
March 1995, Brain research. Molecular brain research,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
September 1992, Development (Cambridge, England),
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
December 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
November 1998, Biochemical and biophysical research communications,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
June 2002, Biochemistry,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
April 1996, The Journal of biological chemistry,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
July 1997, Journal of neuroscience research,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
January 1995, Cellular & molecular biology research,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
January 1996, Human molecular genetics,
J P Julien, and D Meyer, and D Flavell, and J Hurst, and F Grosveld
February 2000, Mechanisms of development,
Copied contents to your clipboard!