Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of the lipopolysaccharides from P. aeruginosa O5 (Lányi) and immunotype 6 (Fisher). 1987

Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova

Lipopolysaccharides were isolated from dry bacterial cells of Pseudomonas aeruginosa O5a,b,c, O5a,b,d, O5a,d (Lányi classification) and immunotype 6 (Fisher classification) by the Westphal procedure. Their polysaccharide chains were built up of trisaccharide repeating units containing D-xylose, 2-acetamido-2,6-dideoxy-D-galactose and a new sialic acid-like sugar, the di-N-acyl derivative of 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic (pseudaminic) acid. Formyl, acetyl and (R)-3-hydroxybutyryl groups were identified as the N-acyl substituents of the last monosaccharide; O5a,b,c and O5a,b,d lipopolysaccharides also contained O-acetyl groups. The glycosidic linkage of pseudaminic acid was extremely labile towards acids, and mild acid degradation of the lipopolysaccharides produced, instead of the O-specific polysaccharides, their trisaccharide fragments with pseudaminic acid at the reducing terminus. Similar degradation of immunotype 6 lipopolysaccharides, followed by oxidation with sodium metaperiodate, resulted in a disaccharide fragment due to destruction of xylose. In contrast the glycosidic linkage of pseudaminic acid proved to be more stable towards treatment with hydrogen fluoride than those of xylose and N-acetylfucosamine. As a result, solvolysis of immunotype 6 lipopolysaccharide with hydrogen fluoride in methanol gave methyl glycosides of a disaccharide and a trisaccharide with pseudaminic acid at the non-reducing terminus. Mild acid hydrolysis of these oligosides afforded free 5-N-acetyl-7-N-formylpseudaminic acid, which was identified by the 1H ande 13C nuclear magnetic resonance data, as well as by the mass spectrum of the corresponding fully methylated aldonic acid. As a result of the identification of all oligosaccharides obtained and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and lipopolysaccharides the following structures were established for the repeating units of the polysaccharide chains of the lipopolysaccharides: (Formula: see text) where D-Xyl = D-xylose, D-FucNAc = 2-acetamido-2,6-dideoxy-D-galactose, Pse5N7NFm = 5-amino-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic+ ++ acid (7-N-formylpseudaminic acid). All the polysaccharides have an identical carbohydrate skeleton and differ from each other by the acyl substituent at N-5 of pseudaminic acid [acetyl or (R)-3-hydroxybutyryl group] or by the presence or absence of the O-acetyl group at position 4 of N-acetylfucosamine. The data obtained account properly for the O specificity of the studied P. aeruginosa strains.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D006858 Hydrofluoric Acid Hydrofluoric acid. A solution of hydrogen fluoride in water. It is a colorless fuming liquid which can cause painful burns. Hydrogen Fluoride,Fluohydric Acid,Fluorhydric Acid,Acid, Fluohydric,Acid, Fluorhydric,Acid, Hydrofluoric,Fluoride, Hydrogen
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000432 Methanol A colorless, flammable liquid used in the manufacture of FORMALDEHYDE and ACETIC ACID, in chemical synthesis, antifreeze, and as a solvent. Ingestion of methanol is toxic and may cause blindness. Alcohol, Methyl,Carbinol,Sodium Methoxide,Wood Alcohol,Alcohol, Wood,Methoxide, Sodium,Methyl Alcohol
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
May 1986, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
August 1985, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
August 1985, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
September 1987, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
November 1982, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
March 1987, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
August 1983, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
June 1982, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
March 1986, European journal of biochemistry,
Y A Knirel, and N A Kocharova, and A S Shashkov, and B A Dmitriev, and N K Kochetkov, and E S Stanislavsky, and G M Mashilova
September 1985, Bioorganicheskaia khimiia,
Copied contents to your clipboard!