Quantifying Hepatic Enzyme Kinetics of (-)-∆9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, 11-OH-THC, through In Vitro Modeling. 2019

Gabriela I Patilea-Vrana, and Jashvant D Unadkat
Department of Pharmaceutics, University of Washington, Seattle, Washington.

The prevalence of cannabis use and the concentrations of the psychoactive cannabinoid in cannabis, (-)-∆9-tetrahydrocannabinol (THC), are rising. Physiologically based pharmacokinetic modeling and simulations (PBPK M&S) can mechanistically predict exposure of THC and its major and active metabolite, 11-hydroxy-THC (11-OH-THC). To build a THC/11-OH-THC PBPK model, mechanistic information about the disposition of these compounds is necessary, including the drug-metabolizing enzymes (DMEs) involved and the fraction metabolized (fm) and metabolic kinetic parameters (intrinsic clearance, maximal formation rate, and Km) via the identified enzymes. We previously identified and quantified the fm of DMEs involved in hepatic depletion of THC and 11-OH-THC. In this study, we extend this work to characterize the enzyme kinetics of THC and 11-OH-THC by monitoring their depletion and formation of some of their metabolites in pooled human liver microsomes. A P450 and UDP-glucuronosyltransferase (UGT) kinetic model was fitted to the concentration-time depletion/formation profiles to establish the contribution and kinetics of the individual DME pathways. CYP2C9 pathway was the major pathway for depletion of THC (fm = 0.91, Km,u = 3 nM) and formation of 11-OH-THC. The remaining THC depletion pathway was attributed to CYP2D6. 11-OH-THC was depleted by UGTs (fm = 0.67 and Km,u = 39 nM), CYP3A4 (fm = 0.18, Km,u = 824 nM), and CYP2C9 (fm = 0.15, Km,u = 33 nM). These mechanistic in vitro data can be used to predict the exposure of THC and 11-OH-THC in healthy and special populations, including in the presence of drug-drug interactions, via PBPK M&S.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013759 Dronabinol A psychoactive compound extracted from the resin of Cannabis sativa (marihuana, hashish). The isomer delta-9-tetrahydrocannabinol (THC) is considered the most active form, producing characteristic mood and perceptual changes associated with this compound. THC,Tetrahydrocannabinol,delta(9)-THC,9-ene-Tetrahydrocannabinol,Marinol,Tetrahydrocannabinol, (6a-trans)-Isomer,Tetrahydrocannabinol, (6aR-cis)-Isomer,Tetrahydrocannabinol, (6aS-cis)-Isomer,Tetrahydrocannabinol, Trans-(+-)-Isomer,Tetrahydrocannabinol, Trans-Isomer,delta(1)-THC,delta(1)-Tetrahydrocannabinol,delta(9)-Tetrahydrocannabinol,9 ene Tetrahydrocannabinol,Tetrahydrocannabinol, Trans Isomer
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D051544 Cytochrome P-450 CYP3A A cytochrome P-450 suptype that has specificity for a broad variety of lipophilic compounds, including STEROIDS; FATTY ACIDS; and XENOBIOTICS. This enzyme has clinical significance due to its ability to metabolize a diverse array of clinically important drugs such as CYCLOSPORINE; VERAPAMIL; and MIDAZOLAM. This enzyme also catalyzes the N-demethylation of ERYTHROMYCIN. CYP3A,CYP3A4,CYP3A5,Cytochrome P-450 CYP3A4,Cytochrome P-450 CYP3A5,Cytochrome P-450IIIA,Cytochrome P450 3A,Cytochrome P450 3A4,Cytochrome P450 3A5,Erythromycin N-Demethylase,Taurochenodeoxycholate 6-alpha-Monooxygenase,3A5, Cytochrome P450,6-alpha-Monooxygenase, Taurochenodeoxycholate,Cytochrome P 450 CYP3A,Cytochrome P 450 CYP3A4,Cytochrome P 450 CYP3A5,Cytochrome P 450IIIA,Erythromycin N Demethylase,N-Demethylase, Erythromycin,P-450 CYP3A, Cytochrome,P-450 CYP3A4, Cytochrome,P-450 CYP3A5, Cytochrome,P-450IIIA, Cytochrome,P450 3A, Cytochrome,P450 3A5, Cytochrome,Taurochenodeoxycholate 6 alpha Monooxygenase
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Gabriela I Patilea-Vrana, and Jashvant D Unadkat
October 2011, Forensic science international,
Gabriela I Patilea-Vrana, and Jashvant D Unadkat
October 1973, The Journal of clinical investigation,
Gabriela I Patilea-Vrana, and Jashvant D Unadkat
January 1984, Journal of analytical toxicology,
Gabriela I Patilea-Vrana, and Jashvant D Unadkat
August 1972, Science (New York, N.Y.),
Gabriela I Patilea-Vrana, and Jashvant D Unadkat
July 1977, Acta pharmacologica et toxicologica,
Gabriela I Patilea-Vrana, and Jashvant D Unadkat
January 1983, Zeitschrift fur Rechtsmedizin. Journal of legal medicine,
Copied contents to your clipboard!