Endocytosis by cultured mesangial cells and associated changes in prostaglandin E2 synthesis. 1987

P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff

The mechanism of macromolecule uptake by cultured mesangial cells was studied by use of transmission electron microscopy. In parallel, we investigated the effect of macromolecular uptake on prostaglandin E2 (PGE2) formation. Cultured rat mesangial cells were studied in their third passage. As model molecules, we used colloidal gold particles (10 nm diameter) coated either with polyethylene glycol (PEG) or fresh serum (SCG). Mesangial cells were incubated from 1 to 60 min and up to 12 h with either PEG or SCG particles. Endocytosis of SCG significantly exceeded that of PEG particles. The mechanism involved binding to coated pits, followed by formation of coated vesicles (endosomes), and eventually delivery of particles to lysosomes. Pretreatment with cytochalasin B virtually prevented endocytosis of SCG particles, indicating active participation of the cytoskeleton. Determination of PGE2 production in parallel showed that SCG significantly stimulated PGE2 synthesis within minutes, whereas PEG-coated gold had no effect. When gold particles were coated with decomplemented serum instead of fresh serum, the stimulation of PGE2 was partially, but not completely, prevented, indicating that complement may be one, but not the only ligand responsible for enhanced PGE2 production. Stimulation of PGE2 synthesis by SCG was not dependent on actual endocytosis, as it was not altered by cytochalasin B pretreatment. Thus, surface ligand-receptor interaction may be sufficient to trigger PGE2 synthesis. The interaction between mesangial endocytosis and PGE2 production may be important for glomerular pathophysiology.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003034 Coated Pits, Cell-Membrane Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES. Bristle-Coated Pits,Cell-Membrane Coated Pits,Bristle Coated Pits,Bristle-Coated Pit,Cell Membrane Coated Pits,Cell-Membrane Coated Pit,Coated Pit, Cell-Membrane,Coated Pits, Cell Membrane,Pit, Bristle-Coated,Pit, Cell-Membrane Coated,Pits, Bristle-Coated,Pits, Cell-Membrane Coated
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.

Related Publications

P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
December 1990, Kidney international,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
August 1979, FEBS letters,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
February 1985, The American journal of physiology,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
January 1996, Experimental nephrology,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
June 1984, Kidney international,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
April 1997, Kidney international,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
February 1990, Biochimica et biophysica acta,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
November 1986, The American journal of physiology,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
March 1993, Metabolism: clinical and experimental,
P C Singhal, and G H Ding, and S DeCandido, and N Franki, and R M Hays, and D Schlondorff
February 2008, The Kobe journal of medical sciences,
Copied contents to your clipboard!