Deduced amino acid sequence of bovine retinal Go alpha: similarities to other guanine nucleotide-binding proteins. 1987

K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan

A bovine retinal cDNA clone encoding the complete sequence (354 amino acids) of Go alpha, a guanine nucleotide-binding protein (G protein), was isolated by using oligonucleotide probes complementary to published sequences in two putative clones for the alpha subunit of bovine transducin (T alpha). The deduced amino acid sequence contained sequences identical to those in seven tryptic peptides (total 63 amino acids) from bovine brain Go alpha. The cDNA for bovine retinal Go alpha exhibits greater than 90% identity in both coding and 3' untranslated regions with a recently described partial cDNA clone for Go alpha from rat brain [Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K. & Kaziro, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 3776-3780]. Comparison of the nucleotide and deduced amino acid sequences of the bovine Go alpha clone with those previously reported for other G proteins of bovine origin (Gs alpha, Gi alpha, and T alpha) reveals extensive regions identical to those surrounding the amino acids modified by cholera toxin and pertussis toxin. There are also marked similarities of sequence in regions of the G proteins, elongation factors, and the ras p21 gene products that are believed to be involved in guanine nucleotide binding and GTP hydrolysis.

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
June 1990, Brain research. Molecular brain research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
August 1989, Nucleic acids research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
August 1989, Nucleic acids research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
January 2001, American journal of veterinary research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
September 1990, Nucleic acids research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
September 1990, Nucleic acids research,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
November 1991, The Journal of biological chemistry,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
July 1990, Biochemical and biophysical research communications,
K P Van Meurs, and C W Angus, and S Lavu, and H F Kung, and S K Czarnecki, and J Moss, and M Vaughan
April 1992, Cellular and molecular neurobiology,
Copied contents to your clipboard!