High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. 2019

István Ilisz, and Tímea Orosz, and Antal Péter
Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary.

Since their introduction by Daniel W. Armstrong in 1994, antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxy, amino and carboxyl groups, halogen atoms, aromatic moieties) are the reasons for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the frequent use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations.This overview chapter provides a brief summary of general aspects of antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.

UI MeSH Term Description Entries
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D047028 Macrocyclic Compounds Cyclic compounds with a ring size of approximately 1-4 dozen atoms. Macrocycle Compounds,Spherands,Torands,Compounds, Macrocycle,Compounds, Macrocyclic

Related Publications

István Ilisz, and Tímea Orosz, and Antal Péter
January 2013, Methods in molecular biology (Clifton, N.J.),
István Ilisz, and Tímea Orosz, and Antal Péter
January 2013, Methods in molecular biology (Clifton, N.J.),
István Ilisz, and Tímea Orosz, and Antal Péter
January 2019, Methods in molecular biology (Clifton, N.J.),
István Ilisz, and Tímea Orosz, and Antal Péter
January 2001, Journal of chromatography. A,
István Ilisz, and Tímea Orosz, and Antal Péter
April 2002, Journal of chromatography. A,
István Ilisz, and Tímea Orosz, and Antal Péter
January 2004, Methods in molecular biology (Clifton, N.J.),
István Ilisz, and Tímea Orosz, and Antal Péter
November 2008, Journal of molecular structure,
István Ilisz, and Tímea Orosz, and Antal Péter
August 2015, Journal of chromatography. A,
Copied contents to your clipboard!