The activity of the pyruvate dehydrogenase complex in heart muscle in the previously obese mouse model. 1986

K Steinbeck, and I D Caterson, and J R Turtle

Obese gold thioglucose injected mice were reduced to lean control weight by food restriction. When pair fed with lean controls these animals then gained weight (were metabolically more efficient). Serum glucose was also elevated in this group (14.5 +/- 0.4 (14) vs 12.1 +/- 0.3 mmol/L, p less than 0.001). If previously obese animals were weight maintained with lean controls (by mild food restriction), serum glucose remained at control levels. The activity of the pyruvate dehydrogenase complex in heart muscle was decreased in both obese and pair fed previously obese, whilst it was similar to that of lean controls in the weight maintained previously obese and in obese mice actually dieted. In all obese and previously obese animals serum insulin was elevated. In hearts from control animals subjected to mild food restriction the pyruvate dehydrogenase complex was activated (11.53 +/- 1.80 (5) vs 3.34 +/- 0.62 (9) U/g dry weight), despite a reduced serum insulin level (42 +/- 2 vs 74 +/- 10 microU/ml, p less than 0.01). These diverse changes in the proportion of the pyruvate dehydrogenase complex in the active form and insulin levels argue for a persistent alteration in the sensitivity of the pyruvate dehydrogenase complex to insulin in obesity, as well as indicating that glucose metabolism in obese animals is altered by both body weight and diet amount.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D006051 Aurothioglucose A thioglucose derivative used as an antirheumatic and experimentally to produce obesity in animals. Gold Thioglucose,Aureotan,Auromyose,Aurothioglucose, Sodium Salt, beta-D Isomer,Aurothioglucose, beta-D Isomer,Gold-50,Solganal,Solganal B Oleosum,Solganol,Thioglucosoaurate,Aurothioglucose, beta D Isomer,B Oleosum, Solganal,Gold 50,Gold50,Oleosum, Solganal B,Thioglucose, Gold,beta-D Isomer Aurothioglucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Steinbeck, and I D Caterson, and J R Turtle
November 1985, The Biochemical journal,
K Steinbeck, and I D Caterson, and J R Turtle
February 1967, Seikagaku. The Journal of Japanese Biochemical Society,
K Steinbeck, and I D Caterson, and J R Turtle
December 1971, Biochimica et biophysica acta,
K Steinbeck, and I D Caterson, and J R Turtle
January 1970, Biokhimiia (Moscow, Russia),
K Steinbeck, and I D Caterson, and J R Turtle
August 1990, The Biochemical journal,
K Steinbeck, and I D Caterson, and J R Turtle
January 1983, Neurology,
K Steinbeck, and I D Caterson, and J R Turtle
March 1996, Shock (Augusta, Ga.),
K Steinbeck, and I D Caterson, and J R Turtle
October 1995, Biochemistry and molecular biology international,
K Steinbeck, and I D Caterson, and J R Turtle
January 2012, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!