The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum. 1987

K M Noll, and R S Wolfe

The structure of component B of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). Three potential roles for this cofactor were considered. First, a methyl thioether derivative of the cofactor was synthesized to investigate its possible role as a methyl donor. This derivative was found to be incapable of acting as a substrate for methanogenesis and proved inhibitory. Secondly, an adenylated form of the cofactor was considered as the potential active form of the coenzyme. This possibility was ruled out based upon collaborative observations with Ankel-Fuchs et al. (FEBS Lett., in press) that HS-HTP is required by the methylreductase system even when ATP is not. Finally, HS-HTP was found to act as a reductant in a partially-purified methylreductase preparation that was incubated under nitrogen. The rate of methane production from HS-HTP exceeded that from other thiols or hydrogen.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008623 Mercaptoethanol A water-soluble thiol derived from hydrogen sulfide and ethanol. It is used as a reducing agent for disulfide bonds and to protect sulfhydryl groups from oxidation. 2-ME,2-Mercaptoethanol,2 Mercaptoethanol
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010769 Phosphothreonine The phosphoric acid ester of threonine. Used as an identifier in the analysis of peptides, proteins, and enzymes. Threonine Phosphate,Phosphate, Threonine
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine
D015080 Mesna A sulfhydryl compound used to prevent urothelial toxicity by inactivating metabolites from ANTINEOPLASTIC AGENTS, such as IFOSFAMIDE or CYCLOPHOSPHAMIDE. 2-Mercaptoethanesulfonate,Coenzyme M,Ethanesulfonic acid, 2-mercapto-, monosodium salt,ASTA-D 7093,MESNA-cell,Mesnex,Mesnum,Mistabron,Mistabronco,Mitexan,Mucofluid,Sodium 2-Mercaptoethanesulphonate,UCB-3983,Uromitexan,Ziken,2 Mercaptoethanesulfonate,2-Mercaptoethanesulphonate, Sodium,ASTA D 7093,ASTAD 7093,MESNA cell,UCB 3983,UCB3983
D019605 Euryarchaeota A phylum of ARCHAEA comprising at least seven classes: Methanobacteria, Methanococci, Halobacteria (extreme halophiles), Archaeoglobi (sulfate-reducing species), Methanopyri, and the thermophiles: Thermoplasmata, and Thermococci. Archaeoglobi,Halobacteria,Methanoococci,Methanopyri,Thermococci,Thermoplasmata,Methanobacteria

Related Publications

K M Noll, and R S Wolfe
August 1986, Proceedings of the National Academy of Sciences of the United States of America,
K M Noll, and R S Wolfe
September 1980, The Journal of biological chemistry,
Copied contents to your clipboard!