Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol- 2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway. 2019

Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province 710032, China.

In this investigation, a series of 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea receptor tyrosine kinase inhibitors were synthesized by a simple and efficient structure-based design. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against human chronic myeloid leukemia (CML) cell line K562, but very weak or no cellular toxicity through monitoring the growth kinetics of K562 cell during a period of 72 h using the real-time live-cell imaging. Among these compounds, 1-(5-((6-((3-morpholinopropyl) amino)pyrimidin-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-(4-(trifluoromethyl)phenyl)urea (7) exhibited the least cellular toxicity and better biological activity in cellular assays (K562, IC50: 0.038 μM). Compound 7 also displayed very good induced-apoptosis effect for human CML cell line K562 and exerted its effect via a significantly reduced protein phosphorylation of PI3K/Akt signal pathway by Human phospho-kinase array analysis. In vitro results indicate that 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea derivatives are lead molecules for further development as treatment of chronic myeloid leukemia and cancer.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases

Related Publications

Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
April 2008, Bioorganic & medicinal chemistry,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
August 2001, Farmaco (Societa chimica italiana : 1989),
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
October 2005, Bioorganic & medicinal chemistry letters,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
April 2000, Acta crystallographica. Section C, Crystal structure communications,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
January 2007, Yao xue xue bao = Acta pharmaceutica Sinica,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
March 2023, Pharmaceuticals (Basel, Switzerland),
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
January 2011, Acta crystallographica. Section E, Structure reports online,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
June 2014, European journal of medicinal chemistry,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
January 2014, Chemical & pharmaceutical bulletin,
Weiwei Li, and Jianjie Chu, and Tingting Fan, and Wei Zhang, and Minna Yao, and Zeqiong Ning, and Mingming Wang, and Jin Sun, and Xian Zhao, and Aidong Wen
March 2006, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!