Conus striatus venom exhibits non-hepatotoxic and non-nephrotoxic potent analgesic activity in mice. 2019

Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines.

Constant research into the pharmaceutical properties of marine natural products has led to the discovery of many potentially active agents considered worthy of medical applications. Genus Conus, which approximately comprises 700 species, is currently under every researcher's interest because of the conopeptides in their crude venom. Conopeptides have a wide range of pharmacological classes and properties. This research focused on the crude venom of Conus striatus to assess its analgesic activity, mutagenicity, nephrotoxicity, and hepatotoxicity in mice. The crude venom was extracted from the conus snails and the protein concentration was determined using Bradford's method. The analgesic activity of the venom was determined using the hot-plate method and standard IFCC method was used to determine the alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Evaluation of mutagenicity was done using micronucleus assay and the nephrotoxicity of the venom was determined using Kidney Coefficient and serum creatinine concentration. The maximum tolerable dose (MTD) of the crude venom was found to be 75 ppm. The venom exhibited potent analgesic activity even higher than the positive control (Ibuprofen). Most of the analgesic drugs can usually impact damage in the liver and kidneys. However, AST and ALT results revealed that the venom has no adverse effects on the liver. Although the venom increased the incidence of micronucleated polychromatic erythrocytes, making it mutagenic, with MTD concentration's mutagenicity comparable to the positive control methyl methanesulfonate (MMS). The kidney coefficients, on the other hand, showed no significant difference between the treated groups and that of the untreated group. The serum creatinine also showed a concentration-dependent increase; with MTD treated mice got the highest creatinine concentration. However, MTD/2 and MTD/4 showed no significant difference in creatinine levels with respect to the untreated groups. Hence, the nephrotoxicity of the venom was only evident when used at higher concentration. The venom exhibited potent analgesic activity indicated that the C. striatus crude venom extract could have a potential therapeutic component as analgesic drugs that displayed no hepatic damage. This study also suggests that for this venom to be utilized for future medical applications, their usage must be regulated and properly monitored to avoid nephrotoxic effect.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008978 Mollusk Venoms Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine. Conus Venoms,Octopus Venoms,Snail Venoms,Conus Venom,Mollusc Venoms,Mollusk Venom,Octopus Venom,Snail Venom,Venom, Conus,Venom, Mollusk,Venom, Octopus,Venom, Snail,Venoms, Conus,Venoms, Mollusc,Venoms, Mollusk,Venoms, Octopus,Venoms, Snail
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D005260 Female Females
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
October 1992, Biochemistry,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
December 1974, Toxicon : official journal of the International Society on Toxinology,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
January 2020, Avicenna journal of medical biotechnology,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
September 2003, Journal of natural products,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
June 2021, Scientific reports,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
October 2014, Iranian journal of basic medical sciences,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
January 1977, Toxicon : official journal of the International Society on Toxinology,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
January 1976, Toxicon : official journal of the International Society on Toxinology,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
January 1999, Peptides,
Rofel Vincent S Jagonia, and Rejemae G Dela Victoria, and Lydia M Bajo, and Roger S Tan
January 1991, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!