Preparation of hair beads and hair follicle germs for regenerative medicine. 2019

Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan.

Hair regenerative medicine is a promising approach for hair loss, during which autologous follicular stem cells are transplanted into regions of hair loss to regenerate hairs. Because cells transplanted as a single cell suspension scarcely generate hairs, the engineering of three-dimensional (3D) tissues before transplantation has been explored to improve this process. Here, we propose an approach to fabricate collagen-enriched cell aggregates, named hair beads (HBs), through the spontaneous constriction of cell-encapsulated collagen drops. Mouse embryonic mesenchymal cells or human dermal papilla cells were encapsulated in 2-μl collagen microgels, which were concentrated >10-fold in volume during 3 days of culture. Interestingly, HB constriction was attributed to attraction forces driven by myosin II and involved the upregulation of follicular genes. Single HBs with epithelial cells seeded in U-shaped microwells formed dumbbell-like structures comprising respective aggregates (named bead-based hair follicle germs, bbHFGs), during 3 days of culture. bbHFGs efficiently generated hair follicles upon intracutaneous transplantation into the backs of nude mice. Using an automated spotter, this approach was scalable to prepare a large number of bbHFGs, which is important for clinical applications. Therefore, this could represent a robust and practical approach for the preparation of germ-like tissues for hair regenerative medicine.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000080386 Microgels Three-dimensional biocompatible polymers in micrometer size range. They are typically spherical particles in a size range of 1-350 micrometers when used for drug delivery and 3D cell culture applications. Microgel
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
September 2023, Journal of bioscience and bioengineering,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
January 2021, Scientific reports,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
January 2024, ACS biomaterials science & engineering,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
July 2008, Seikagaku. The Journal of Japanese Biochemical Society,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
April 2018, ACS biomaterials science & engineering,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
August 2013, Tissue engineering. Part B, Reviews,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
March 2007, Expert opinion on biological therapy,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
January 2014, Regenerative medicine,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
January 2020, Advances in experimental medicine and biology,
Tatsuto Kageyama, and Lei Yan, and Akihiro Shimizu, and Shoji Maruo, and Junji Fukuda
January 2022, Bioengineering & translational medicine,
Copied contents to your clipboard!