Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. 2019

Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan.

Nicotine in tobacco causes psychological dependence through its rewarding effect in the central nervous system (CNS). Although nicotine dependence is explained by dopamine receptor (DR) signaling together with nicotinic acetylcholine receptors (nAChRs), the synaptic molecular mechanism underlying the interaction between dopamine receptor and nAChRs remains unclear. Since reward signaling is mediated by dopamine receptors, we hypothesized that the dopamine D2 receptor (D2R), in part, mediates the synaptic modulation of nicotine-induced conditioned place preference (CPP) in addition to dopamine D1 receptor. To investigate the involvement of D2R, wild-type (WT) and dopamine D2 receptor knockout (D2RKO) mice were assessed using the CPP task after induction of nicotine-induced CPP. As expected, D2RKO mice failed to induce CPP behaviors after repeated nicotine administration (0.5 mg/kg). When kinase signaling was assessed in the nucleus accumbens and hippocampal CA1 region after repeated nicotine administration, both Ca2+/calmodulin-dependent protein kinase (CaMKII) and extracellular signal-regulated kinase (ERK) were upregulated in WT mice but not in D2RKO mice. Likewise, nicotine-induced CPP was associated with elevation of pro- brain-derived neurotropic factor (BDNF) and BDNF protein levels in WT mice, but not in D2RKO mice. Taken together, in addition to dopamine D1 receptor signaling, dopamine D2 receptor signaling is critical for induction of nicotine-induced CPP in mice.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D003213 Conditioning, Psychological Simple form of learning involving the formation, strengthening, or weakening of an association between a stimulus and a response. Conditioning, Psychology,Psychological Conditioning,Social Learning Theory,Social Learning Theories,Theory, Social Learning
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out
D018722 Nicotinic Agonists Drugs that bind to and activate nicotinic cholinergic receptors (RECEPTORS, NICOTINIC). Nicotinic agonists act at postganglionic nicotinic receptors, at neuroeffector junctions in the peripheral nervous system, and at nicotinic receptors in the central nervous system. Agents that function as neuromuscular depolarizing blocking agents are included here because they activate nicotinic receptors, although they are used clinically to block nicotinic transmission. Cholinergic Agonists, Nicotinic,Cholinergic Agonist, Nicotinic,Nicotinic Agonist,Agonist, Nicotinic,Agonist, Nicotinic Cholinergic,Agonists, Nicotinic,Agonists, Nicotinic Cholinergic,Nicotinic Cholinergic Agonist,Nicotinic Cholinergic Agonists

Related Publications

Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
December 2000, Pharmacology, biochemistry, and behavior,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
January 1995, Pharmacology, biochemistry, and behavior,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
September 2011, Pharmacology, biochemistry, and behavior,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
February 1985, Pharmacology, biochemistry, and behavior,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
December 2007, Fa yi xue za zhi,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
September 2011, Drug and alcohol dependence,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
February 2005, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
February 2015, Behavioral neuroscience,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
March 2008, Pharmacology, biochemistry, and behavior,
Gofarana Wilar, and Yasuharu Shinoda, and Toshikuni Sasaoka, and Kohji Fukunaga
May 2023, Brain and behavior,
Copied contents to your clipboard!